Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Refactor MMDiT, add ImageToImage and Inpaint for SD3 #1909

Merged

Conversation

james77777778
Copy link
Collaborator

@james77777778 james77777778 commented Oct 5, 2024

This PR includes the following updates:

  • Refactor MMDiT that by replacing models.Sequential with new MLP layer, simplifying/clarifying the modulation process using new AdaptiveLayerNormalization layer
  • Add missing docstrings to MMDiT
  • Update the conversion script and the weights on Kaggle
  • Introduce ImageToImage task and apply it to SD3
  • Introduce Inpaint task and apply it to SD3
  • Fix bugs when calling save_to_preset with nested preprocessors and tokenizers

ImageToImage demo:
https://colab.research.google.com/drive/1Qz6WsLZXiuCtWZdxg_V1LuhkNUMm0E9F?usp=sharing

Reference Image Generated Image (1024x1024)
cat output

Inpaint demo:
https://colab.research.google.com/drive/1uFqXgzGctd5KGygOptq8hGoRpZht0rGW?usp=sharing

Reference Image Mask Generated Image
inpaint inpaint_mask output

@divyashreepathihalli

@james77777778 james77777778 added the kokoro:force-run Runs Tests on GPU label Oct 5, 2024
@kokoro-team kokoro-team removed the kokoro:force-run Runs Tests on GPU label Oct 5, 2024
@james77777778 james77777778 added the kokoro:force-run Runs Tests on GPU label Oct 5, 2024
@kokoro-team kokoro-team removed the kokoro:force-run Runs Tests on GPU label Oct 5, 2024
@james77777778 james77777778 changed the title Refactor MMDiT and add ImageToImage for SD3 Refactor MMDiT, add ImageToImage and Inpaint for SD3 Oct 6, 2024
@james77777778 james77777778 added the kokoro:force-run Runs Tests on GPU label Oct 6, 2024
@kokoro-team kokoro-team removed the kokoro:force-run Runs Tests on GPU label Oct 6, 2024
@james77777778 james77777778 added the kokoro:force-run Runs Tests on GPU label Oct 7, 2024
@kokoro-team kokoro-team removed the kokoro:force-run Runs Tests on GPU label Oct 7, 2024
@james77777778 james77777778 added the kokoro:force-run Runs Tests on GPU label Oct 7, 2024
@kokoro-team kokoro-team removed the kokoro:force-run Runs Tests on GPU label Oct 7, 2024
Copy link
Collaborator

@divyashreepathihalli divyashreepathihalli left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Few small edits!
LGTM!


Args:
images: python data, tensor data, or a `tf.data.Dataset`.
inputs: python data, tensor data, or a `tf.data.Dataset`.
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

please add more details about this arg inputs, seems too generic.

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thanks for the review. I have some ideas to refine the args for TextToImage, ImageToImage and Inpaint.
I believe it would be better to align the API design with that of CausalLM.

Working on it!

Copy link
Collaborator Author

@james77777778 james77777778 Oct 8, 2024

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@divyashreepathihalli
I have refactored the arguments for all TextToImage, ImageToImage and Inpaint tasks to use a single inputs, which aligns with CausalLM. Additionally, detailed docstrings have been added.

For inputs:

  • TextToImage: Accepts str, [str] , {"prompts": str|[str]}, {"prompts": str|[str], "negative_prompts": str|[str]}, and tf.data.Dataset.
  • ImageToImage: Accepts {"images": array, "prompts": str|[str]}, {"images": array, "prompts": str|[str], "negative_prompts": str|[str]}, andtf.data.Dataset.
  • Inpaint: Accepts {"images": array, "masks": array, "prompts": str|[str]}, {"images": array, "masks": array, "prompts": str|[str], "negative_prompts": str|[str]} and tf.data.Dataset.

I’ve also noticed that Flux doesn't support "negative_prompts". To address this, I’ve introduced a new attr, support_negative_prompts, that toggles this feature based the attr.

Please let me know if this looks good.

will be processed as batches.

Args:
images: python data, tensor data, or a `tf.data.Dataset`.
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

add more description to args

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Please see the comment above.

@divyashreepathihalli divyashreepathihalli added the kokoro:force-run Runs Tests on GPU label Oct 7, 2024
@kokoro-team kokoro-team removed the kokoro:force-run Runs Tests on GPU label Oct 7, 2024
@divyashreepathihalli divyashreepathihalli added the kokoro:force-run Runs Tests on GPU label Oct 8, 2024
@kokoro-team kokoro-team removed the kokoro:force-run Runs Tests on GPU label Oct 8, 2024
@james77777778 james77777778 added the kokoro:force-run Runs Tests on GPU label Oct 8, 2024
@kokoro-team kokoro-team removed the kokoro:force-run Runs Tests on GPU label Oct 8, 2024
@james77777778
Copy link
Collaborator Author

I have refactored the arguments for all TextToImage, ImageToImage and Inpaint tasks to use a single inputs, which aligns with CausalLM.
The logic in generate is now similar to that of CausalLM. The downside is that users may need to provide a dict as inputs which could be a bit ambiguous.

@divyashreepathihalli
Copy link
Collaborator

This is clearer and more consistent with the other generative models!!

@divyashreepathihalli divyashreepathihalli merged commit 3cf3017 into keras-team:master Oct 8, 2024
10 checks passed
@james77777778 james77777778 deleted the refactor-mmdit branch October 9, 2024 07:37
ushareng pushed a commit to ushareng/keras-nlp that referenced this pull request Oct 24, 2024
BytePairTokenizer must not split sequences of \n (keras-team#1910)

* fix for loading of special tokens in Llama tokenizer

* fix for Llama tokenizer which can have multiple end tokens

* bug fix

* adding some missing tokens to Llama3 tokenizer

* fixed tests and Llama3Tokenizer init.

* now loading correct eos_token config from Hugging Face checkpoint. Using hack for Keras checkpoint because it does not have this info

* fix for BytePairTokenizer to make Lllama3-instruct work in chat: \n\n sequences are significant in the chat template and must be preserved by the tokenizer

---------

Co-authored-by: Martin Görner <[email protected]>

fix for generation that never stops in Llama3-Instruct variants (keras-team#1904)

* fix for loading of special tokens in Llama tokenizer

* fix for Llama tokenizer which can have multiple end tokens

* bug fix

* adding some missing tokens to Llama3 tokenizer

* fixed tests and Llama3Tokenizer init.

* now loading correct eos_token config from Hugging Face checkpoint. Using hack for Keras checkpoint because it does not have this info

---------

Co-authored-by: Martin Görner <[email protected]>

fix failing JAX GPU test (keras-team#1911)

* fix tests

* fix test

Refactor `MMDiT`, add `ImageToImage` and `Inpaint` for SD3 (keras-team#1909)

* Refactor `MMDiT` and add `ImageToImage`

* Update model version

* Fix minor bugs.

* Add `Inpaint` for SD3.

* Fix warnings of MMDiT.

* Addcomment to Inpaint

* Simplify `MMDiT` implementation and info of `summary()`.

* Refactor `generate()` API of `TextToImage`, `ImageToImage` and `Inpaint`.

Minor bug fix (keras-team#1915)

Change to image_converter.image_size since it is a tuple and it's not a callable function.

[Mix Transformer] Add Presets for MiTB0...MiTB5 (keras-team#1893)

* add presets for mit

* add standin paths

* register presets in __init__.py

* fix op in overlapping patching and embedding, start adding conversion utils

* style

* add padding to MiT patchingandembedding

* update to support other presets

* update conversin script

* fix link for b5

* add cityscapes weights

* update presets

* update presets

* update conversion script to make directories

* use save_preset

* change name of output dir

* add preprocessor flow

* api gen and add preprocessor to mits

* conform to new image classifier style

* format

* resizing image converter -> ImageConverter

* address comments

refactoring

remove default resizing for vision backbones (keras-team#1916)

* remove defailt resizing

* fix GPU test

Update VGG model to be compatible with HF and add conversion scripts (keras-team#1914)

Deeplab presets (keras-team#1918)

* add preset configurations for deeplabv3

* fix uri

* Add training details

update presets to point to the main Keras Kaggle page (keras-team#1921)

* update presets to point to the main keras page

* update mit path

Added test for the way BytePairTokenizer handles the \n\n sequence, which is important in Lama chat templates (keras-team#1912)

* added test for the way BytePairTokenizer handles the \n\n sequence, which is important in Lama chat templates

* un commented the test lines that were commented by mistake

* fixed linter errors

Task models fix (keras-team#1922)

* added test for the way BytePairTokenizer handles the \n\n sequence, which is important in Lama chat templates

* fix for wrongly configured task models LLama, PaliGemma, Mistral and Phi3 + test

* comments

* un commented the test lines that were commented by mistake

* fixed linter errors

adding option strip_prompt to generate() (keras-team#1913)

* added test for the way BytePairTokenizer handles the \n\n sequence, which is important in Lama chat templates

* un commented the test lines that were commented by mistake

* fixed linter errors

* added options strip_prompt to generate()

* fix for tensorflow: the compiled version of generate(strip_prompt=True) now works + code refactoring to make it more understandable

* added test for generate(strip_prompt=True)

* minor edits

Layout map for Llama (keras-team#1923)

* added test for the way BytePairTokenizer handles the \n\n sequence, which is important in Lama chat templates

* un commented the test lines that were commented by mistake

* fixed linter errors

* added default layout map for Llama

* minor fixes in tests

Update deeplab_v3_presets.py (keras-team#1924)

Add paths to get SAM weights from (keras-team#1925)

Two fixes for image resizing in preprocessing (keras-team#1927)

1. Properly display when are not resizing the input image in
   `model.summary()`
2. Allow setting the `image_size` directly on a preprocessing layer.

2. is just to allow a more consistent way to set the input shape
across tasks. We now have:

```python
text_classifier = keras_hub.models.TextClassifer.from_preset(
    "bert_base_en",
)
text_classifier.preprocessor.sequence_length = 256

image_classifier = keras_hub.models.TextClassifer.from_preset(
    "bert_base_en",
)
image_classifier.preprocessor.image_size = (256, 256)

multi_modal_lm = keras_hub.models.CausalLM.from_preset(
    "some_preset",
)
multi_modal_lm.preprocessor.sequence_length = 256
multi_modal_lm.preprocessor.image_size = (256, 256)
```

add back default image resizing (keras-team#1926)

Update deeplab_v3_presets.py (keras-team#1928)

* Update deeplab_v3_presets.py

* Update deeplab_v3_presets.py

Update PaliGemma to remove `include_rescaling` arg (keras-team#1917)

* update PaliGemma

* update conversion script

* fix GPU tests

fix path (keras-team#1929)

* fix path

* nit

Fix paligemma checkpoint conversion script (keras-team#1931)

* add back default image resizing

* fix bug in image converter

* fix paligemma checkpoint conversion file

* fix preset name

* remove debug code

* revert unintended changes

update preset path to point to latest version of models (keras-team#1932)

Update sdv3 path (keras-team#1934)

update sam docstring to show correct backbone in docstring (keras-team#1936)

Convert input dict to tensors during train_on_batch (keras-team#1919)

Register VGG presets. (keras-team#1935)

* register vgg preset

* nit

* nit

* nit

Add ResNetVD presets (keras-team#1897)

* Add ResNetVD presets

* Updated Kaggle handles

* Add weight conversion script for ResNet_vd

* Add usage

rebase conflict resolved

conflict resolve

Update sam_presets.py (keras-team#1940)

Update vit_det_backbone.py (keras-team#1941)

fix gpu test (keras-team#1939)

* fix gpu test

* cast input

* update dtype

* change to resnet preset

* remove arg

Added Support for Returning Attention Scores in TransformerEncoder call (keras-team#1879)

* Added: Return attention scores argument to transformer encoder

* Added: docstring for return_attention_scores and added a test to chek the working of the argument

* Fixed: Test case by removing print stmts and using self.assertAllEqual

* Fixed: Linting

Mark preset tests as large (keras-team#1942)

* fix tests

* fix test

* Update preset_utils_test.py

version bump to 0.17.0.dev0 (keras-team#1944)

Update stable_diffusion_3_presets.py (keras-team#1946)

[Semantic Segmentation] - Add SegFormer Architecture, Weight Conversion Script and Presets (keras-team#1883)

* initial commit - tf-based, kcv

* porting to keras_hub structure - removing aliases, presets, etc.

* enable instantiation of segformer backbone with custom MiT backbone

* remove num_classes from backbone

* fix input

* add imports to __init__

* update preset

* update docstrings

* add basic tests

* remove redundant imports

* update docstrings

* remove unused import

* running api_gen.py

* undo refactor of mit

* update docstrings

* add presets for mit

* add standin paths

* add presets for segformer backbone

* register presets in __init__.py

* addressing comments

* addressing comments

* addressing comments

* update most tests

* add remaining tests

* remove copyright

* fix test

* override from_config

* fix op in overlapping patching and embedding, start adding conversion utils

* style

* add padding to MiT patchingandembedding

* update to support other presets

* update conversin script

* fix link for b5

* add cityscapes weights

* update presets

* update presets

* update conversion script to make directories

* use save_preset

* change name of output dir

* add preprocessor flow

* api gen and add preprocessor to mits

* conform to new image classifier style

* format

* resizing image converter -> ImageConverter

* merge mit branch into segformer branch

* add preprocessor and converter

* address comments

* clarify backbone usage

* add conversion script

* numerical equivalence changes

* fix numerical inaccuracies

* update conversion script

* update conversion script

* remove transpose

* add preprocessor to segformer class

* fix preset path

* update test shape

* update presets

* update test shape

* expand docstrings

* add rescaling and normalization to preprocessor

* remove backbone presets, remove copyrights, remove backbone cls from segmenter

* remove copyright and unused import

* apply same transformation to masks as input images

* fix import

* fix shape in tests

Update readme (keras-team#1949)

* Update README.md

* Update README.md

Update llama_backbone.py docstring (keras-team#1950)

Update path (keras-team#1953)

Update preset path for keras.io.

There is no LLaMA2 in keras.io https://keras.io/api/keras_hub/models/llama2

This is the actual link:
https://keras.io/api/keras_hub/models/llama2

For Vicuna it does not have it's own model direcotry, since it is also the part of Llama,, updated the path.

Update SD3 init parameters (replacing `height`, `width` with `image_shape`) (keras-team#1951)

* Replace SD3 `height` and `width` with `image_shape`

* Update URI

* Revert comment

* Update SD3 handle

* Replace `height` and `width` with `image_shape`

* Update docstrings

* Fix CI

Update docstring (keras-team#1954)

AudioConverter is registered as "keras_hub.layers.WhisperAudioConverter" and not as part of models.

 updated Mobilenet backbone to match it with torch implementation

timm script added

checkpoint conversion added

Refactoring
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

3 participants