TensorFlow implementation of Learning from Simulated and Unsupervised Images through Adversarial Training.
- Python 2.7
- TensorFlow 0.12.1
- SciPy
- pillow
- tqdm
To generate synthetic dataset:
- Run UnityEyes with changing
resolution
to640x480
andCamera parameters
to[0, 0, 20, 40]
. - Move generated images and json files into
data/gaze/UnityEyes
.
The data
directory should looks like:
data
├── gaze
│ ├── MPIIGaze
│ │ └── Data
│ │ └── Normalized
│ │ ├── p00
│ │ ├── p01
│ │ └── ...
│ └── UnityEyes # contains images of UnityEyes
│ ├── 1.jpg
│ ├── 1.json
│ ├── 2.jpg
│ ├── 2.json
│ └── ...
├── __init__.py
├── gaze_data.py
├── hand_data.py
└── utils.py
To train a model (samples will be generated in samples
directory):
$ python main.py
$ tensorboard --logdir=logs --host=0.0.0.0
To refine all synthetic images with a pretrained model:
$ python main.py --is_train=False --synthetic_image_dir="./data/gaze/UnityEyes/"
- Used Adam and Stochatstic Gradient Descent optimizer.
- Only used 83K (14% of 1.2M used by the paper) synthetic images from
UnityEyes
. - Manually choose hyperparameters for
B
andlambda
because those are not specified in the paper.
For these synthetic images,
Result of lambda=1.0
with optimizer=sgd
after 8,000 steps.
$ python main.py --reg_scale=1.0 --optimizer=sgd
Result of lambda=0.5
with optimizer=sgd
after 8,000 steps.
$ python main.py --reg_scale=0.5 --optimizer=sgd
Training loss of discriminator and refiner when lambda
is 1.0
(green) and 0.5
(yellow).
For these synthetic images,
Result of lambda=1.0
with optimizer=adam
after 4,000 steps.
$ python main.py --reg_scale=1.0 --optimizer=adam
Result of lambda=0.5
with optimizer=adam
after 4,000 steps.
$ python main.py --reg_scale=0.5 --optimizer=adam
Result of lambda=0.1
with optimizer=adam
after 4,000 steps.
$ python main.py --reg_scale=0.1 --optimizer=adam
Training loss of discriminator and refiner when lambda
is 1.0
(blue), 0.5
(purple) and 0.1
(green).
Taehoon Kim / @carpedm20