Skip to content

Commit

Permalink
Merge branch 'sd3' into sd3_5_support
Browse files Browse the repository at this point in the history
  • Loading branch information
kohya-ss committed Oct 27, 2024
2 parents 150579d + 731664b commit b649bbf
Show file tree
Hide file tree
Showing 2 changed files with 14 additions and 4 deletions.
7 changes: 7 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -953,6 +953,13 @@ https://github.com/kohya-ss/sd-scripts/pull/1290) frodo821 氏に感謝します
- `gen_imgs.py` のプロンプトオプションに、保存時のファイル名を指定する `--f` オプションを追加しました。また同スクリプトで Diffusers ベースのキーを持つ LoRA の重みに対応しました。


### Oct 27, 2024 / 2024-10-27:

- `svd_merge_lora.py` VRAM usage has been reduced. However, main memory usage will increase (32GB is sufficient).
- This will be included in the next release.
- `svd_merge_lora.py` のVRAM使用量を削減しました。ただし、メインメモリの使用量は増加します(32GBあれば十分です)。
- これは次回リリースに含まれます。

### Oct 26, 2024 / 2024-10-26:

- Fixed a bug in `svd_merge_lora.py`, `sdxl_merge_lora.py`, and `resize_lora.py` where the hash value of LoRA metadata was not correctly calculated when the `save_precision` was different from the `precision` used in the calculation. See issue [#1722](https://github.com/kohya-ss/sd-scripts/pull/1722) for details. Thanks to JujoHotaru for raising the issue.
Expand Down
11 changes: 7 additions & 4 deletions networks/svd_merge_lora.py
Original file line number Diff line number Diff line change
Expand Up @@ -301,10 +301,10 @@ def merge_lora_models(models, ratios, lbws, new_rank, new_conv_rank, device, mer
# make original weight if not exist
if lora_module_name not in merged_sd:
weight = torch.zeros((out_dim, in_dim, *kernel_size) if conv2d else (out_dim, in_dim), dtype=merge_dtype)
if device:
weight = weight.to(device)
else:
weight = merged_sd[lora_module_name]
if device:
weight = weight.to(device)

# merge to weight
if device:
Expand Down Expand Up @@ -336,13 +336,16 @@ def merge_lora_models(models, ratios, lbws, new_rank, new_conv_rank, device, mer
conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3)
weight = weight + ratio * conved * scale

merged_sd[lora_module_name] = weight
merged_sd[lora_module_name] = weight.to("cpu")

# extract from merged weights
logger.info("extract new lora...")
merged_lora_sd = {}
with torch.no_grad():
for lora_module_name, mat in tqdm(list(merged_sd.items())):
if device:
mat = mat.to(device)

conv2d = len(mat.size()) == 4
kernel_size = None if not conv2d else mat.size()[2:4]
conv2d_3x3 = conv2d and kernel_size != (1, 1)
Expand Down Expand Up @@ -381,7 +384,7 @@ def merge_lora_models(models, ratios, lbws, new_rank, new_conv_rank, device, mer

merged_lora_sd[lora_module_name + ".lora_up.weight"] = up_weight.to("cpu").contiguous()
merged_lora_sd[lora_module_name + ".lora_down.weight"] = down_weight.to("cpu").contiguous()
merged_lora_sd[lora_module_name + ".alpha"] = torch.tensor(module_new_rank)
merged_lora_sd[lora_module_name + ".alpha"] = torch.tensor(module_new_rank, device="cpu")

# build minimum metadata
dims = f"{new_rank}"
Expand Down

0 comments on commit b649bbf

Please sign in to comment.