generated from langchain-ai/integration-repo-template
-
Notifications
You must be signed in to change notification settings - Fork 82
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #7 from 3coins/add-retrievers
Added retrievers, moved gitignore to root.
- Loading branch information
Showing
11 changed files
with
867 additions
and
14 deletions.
There are no files selected for viewing
File renamed without changes.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,3 +1,11 @@ | ||
from langchain_aws.llms import SagemakerEndpoint | ||
from langchain_aws.retrievers import ( | ||
AmazonKendraRetriever, | ||
AmazonKnowledgeBasesRetriever, | ||
) | ||
|
||
__all__ = ["SagemakerEndpoint"] | ||
__all__ = [ | ||
"SagemakerEndpoint", | ||
"AmazonKendraRetriever", | ||
"AmazonKnowledgeBasesRetriever", | ||
] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,8 @@ | ||
from langchain_aws.retrievers.bedrock import AmazonKnowledgeBasesRetriever | ||
from langchain_aws.retrievers.kendra import AmazonKendraRetriever | ||
|
||
__all__ = [ | ||
"AmazonKendraRetriever", | ||
"AmazonKendraRetriever", | ||
"AmazonKnowledgeBasesRetriever", | ||
] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,127 @@ | ||
from typing import Any, Dict, List, Optional | ||
|
||
import boto3 | ||
from botocore.client import Config | ||
from botocore.exceptions import UnknownServiceError | ||
from langchain_core.callbacks import CallbackManagerForRetrieverRun | ||
from langchain_core.documents import Document | ||
from langchain_core.pydantic_v1 import BaseModel, root_validator | ||
from langchain_core.retrievers import BaseRetriever | ||
|
||
|
||
class VectorSearchConfig(BaseModel, extra="allow"): # type: ignore[call-arg] | ||
"""Configuration for vector search.""" | ||
|
||
numberOfResults: int = 4 | ||
|
||
|
||
class RetrievalConfig(BaseModel, extra="allow"): # type: ignore[call-arg] | ||
"""Configuration for retrieval.""" | ||
|
||
vectorSearchConfiguration: VectorSearchConfig | ||
|
||
|
||
class AmazonKnowledgeBasesRetriever(BaseRetriever): | ||
"""`Amazon Bedrock Knowledge Bases` retrieval. | ||
See https://aws.amazon.com/bedrock/knowledge-bases for more info. | ||
Args: | ||
knowledge_base_id: Knowledge Base ID. | ||
region_name: The aws region e.g., `us-west-2`. | ||
Fallback to AWS_DEFAULT_REGION env variable or region specified in | ||
~/.aws/config. | ||
credentials_profile_name: The name of the profile in the ~/.aws/credentials | ||
or ~/.aws/config files, which has either access keys or role information | ||
specified. If not specified, the default credential profile or, if on an | ||
EC2 instance, credentials from IMDS will be used. | ||
client: boto3 client for bedrock agent runtime. | ||
retrieval_config: Configuration for retrieval. | ||
Example: | ||
.. code-block:: python | ||
from langchain_community.retrievers import AmazonKnowledgeBasesRetriever | ||
retriever = AmazonKnowledgeBasesRetriever( | ||
knowledge_base_id="<knowledge-base-id>", | ||
retrieval_config={ | ||
"vectorSearchConfiguration": { | ||
"numberOfResults": 4 | ||
} | ||
}, | ||
) | ||
""" | ||
|
||
knowledge_base_id: str | ||
region_name: Optional[str] = None | ||
credentials_profile_name: Optional[str] = None | ||
endpoint_url: Optional[str] = None | ||
client: Any | ||
retrieval_config: RetrievalConfig | ||
|
||
@root_validator(pre=True) | ||
def create_client(cls, values: Dict[str, Any]) -> Dict[str, Any]: | ||
if values.get("client") is not None: | ||
return values | ||
|
||
try: | ||
if values.get("credentials_profile_name"): | ||
session = boto3.Session(profile_name=values["credentials_profile_name"]) | ||
else: | ||
# use default credentials | ||
session = boto3.Session() | ||
|
||
client_params = { | ||
"config": Config( | ||
connect_timeout=120, read_timeout=120, retries={"max_attempts": 0} | ||
) | ||
} | ||
if values.get("region_name"): | ||
client_params["region_name"] = values["region_name"] | ||
|
||
if values.get("endpoint_url"): | ||
client_params["endpoint_url"] = values["endpoint_url"] | ||
|
||
values["client"] = session.client("bedrock-agent-runtime", **client_params) | ||
|
||
return values | ||
except ImportError: | ||
raise ModuleNotFoundError( | ||
"Could not import boto3 python package. " | ||
"Please install it with `pip install boto3`." | ||
) | ||
except UnknownServiceError as e: | ||
raise ModuleNotFoundError( | ||
"Ensure that you have installed the latest boto3 package " | ||
"that contains the API for `bedrock-runtime-agent`." | ||
) from e | ||
except Exception as e: | ||
raise ValueError( | ||
"Could not load credentials to authenticate with AWS client. " | ||
"Please check that credentials in the specified " | ||
"profile name are valid." | ||
) from e | ||
|
||
def _get_relevant_documents( | ||
self, query: str, *, run_manager: CallbackManagerForRetrieverRun | ||
) -> List[Document]: | ||
response = self.client.retrieve( | ||
retrievalQuery={"text": query.strip()}, | ||
knowledgeBaseId=self.knowledge_base_id, | ||
retrievalConfiguration=self.retrieval_config.dict(), | ||
) | ||
results = response["retrievalResults"] | ||
documents = [] | ||
for result in results: | ||
documents.append( | ||
Document( | ||
page_content=result["content"]["text"], | ||
metadata={ | ||
"location": result["location"], | ||
"score": result["score"] if "score" in result else 0, | ||
}, | ||
) | ||
) | ||
|
||
return documents |
Oops, something went wrong.