-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #2 from lincc-frameworks/port-pandas-ts
Port pandas-ts code
- Loading branch information
Showing
12 changed files
with
2,487 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,3 +1,7 @@ | ||
from .example_module import greetings, meaning | ||
|
||
__all__ = ["greetings", "meaning"] | ||
# Import for registering | ||
from .series.accessor import NestSeriesAccessor # noqa: F401 | ||
from .series.dtype import NestedDtype | ||
|
||
__all__ = ["greetings", "meaning", "NestedDtype"] |
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,240 @@ | ||
# Python 3.9 doesn't support "|" for types | ||
from __future__ import annotations | ||
|
||
from collections.abc import Generator, MutableMapping | ||
from typing import cast | ||
|
||
import numpy as np | ||
import pandas as pd | ||
import pyarrow as pa | ||
from numpy.typing import ArrayLike | ||
from pandas.api.extensions import register_series_accessor | ||
|
||
from nested_pandas.series.dtype import NestedDtype | ||
from nested_pandas.series.packer import pack_sorted_df_into_struct | ||
|
||
__all__ = ["NestSeriesAccessor"] | ||
|
||
|
||
@register_series_accessor("nest") | ||
class NestSeriesAccessor(MutableMapping): | ||
"""Accessor for operations on Series of NestedDtype | ||
This accessor implements `MutableMapping` interface over the fields of the | ||
struct, so you can access, change and delete the fields as if it was a | ||
dictionary, with `[]`, `[] =` and `del` operators. | ||
""" | ||
|
||
def __init__(self, series): | ||
self._check_series(series) | ||
|
||
self._series = series | ||
|
||
@staticmethod | ||
def _check_series(series): | ||
dtype = series.dtype | ||
if not isinstance(dtype, NestedDtype): | ||
raise AttributeError(f"Can only use .nest accessor with a Series of NestedDtype, got {dtype}") | ||
|
||
def to_lists(self, fields: list[str] | None = None) -> pd.DataFrame: | ||
"""Convert nested series into dataframe of list-array columns | ||
Parameters | ||
---------- | ||
fields : list[str] or None, optional | ||
Names of the fields to include. Default is None, which means all fields. | ||
Returns | ||
------- | ||
pd.DataFrame | ||
Dataframe of list-arrays. | ||
""" | ||
df = self._series.struct.explode() | ||
if fields is None: | ||
return df | ||
return df[fields] | ||
|
||
def to_flat(self, fields: list[str] | None = None) -> pd.DataFrame: | ||
"""Convert nested series into dataframe of flat arrays | ||
Parameters | ||
---------- | ||
fields : list[str] or None, optional | ||
Names of the fields to include. Default is None, which means all fields. | ||
Returns | ||
------- | ||
pd.DataFrame | ||
Dataframe of flat arrays. | ||
""" | ||
# For some reason, .struct.dtypes is cached, so we will use NestedExtensionArray directly | ||
fields = fields if fields is not None else list(self._series.array.field_names) | ||
if len(fields) == 0: | ||
raise ValueError("Cannot flatten a struct with no fields") | ||
|
||
flat_series = {} | ||
index = None | ||
for field in fields: | ||
list_array = cast(pa.ListArray, pa.array(self._series.struct.field(field))) | ||
if index is None: | ||
index = np.repeat(self._series.index.values, np.diff(list_array.offsets)) | ||
flat_series[field] = pd.Series( | ||
list_array.flatten(), | ||
index=index, | ||
name=field, | ||
copy=False, | ||
) | ||
return pd.DataFrame(flat_series) | ||
|
||
@property | ||
def flat_length(self) -> int: | ||
"""Length of the flat arrays""" | ||
return self._series.array.flat_length | ||
|
||
@property | ||
def fields(self) -> list[str]: | ||
"""Names of the nested columns""" | ||
# For some reason, .struct.dtypes is cached, so we will use NestedExtensionArray directly | ||
return self._series.array.field_names | ||
|
||
def set_flat_field(self, field: str, value: ArrayLike) -> None: | ||
"""Set the field from flat-array of values, in-place | ||
Parameters | ||
---------- | ||
field : str | ||
Name of the field to set. If not present, it will be added. | ||
value : ArrayLike | ||
Array of values to set. It must be a scalar or have the same length | ||
as the flat arrays, e.g. `self.flat_length`. | ||
""" | ||
self._series.array.set_flat_field(field, value) | ||
|
||
def set_list_field(self, field: str, value: ArrayLike) -> None: | ||
"""Set the field from list-array, in-place | ||
Parameters | ||
---------- | ||
field : str | ||
Name of the field to set. If not present, it will be added. | ||
value : ArrayLike | ||
Array of values to set. It must be a list-array of the same length | ||
as the series, e.g. length of the series. | ||
""" | ||
self._series.array.set_list_field(field, value) | ||
|
||
# I intentionally don't call it `drop` or `drop_field` because `pd.DataFrame.drop` is not inplace | ||
# by default, and I wouldn't like to surprise the user. | ||
def pop_field(self, field: str) -> pd.Series: | ||
"""Delete the field from the struct and return it. | ||
Parameters | ||
---------- | ||
field : str | ||
Name of the field to delete. | ||
Returns | ||
------- | ||
pd.Series | ||
The deleted field. | ||
""" | ||
series = self[field] | ||
self._series.array.pop_field(field) | ||
return series | ||
|
||
def query_flat(self, query: str) -> pd.Series: | ||
"""Query the flat arrays with a boolean expression | ||
Currently, it will remove empty rows from the output series. | ||
# TODO: preserve the index keeping empty rows | ||
Parameters | ||
---------- | ||
query : str | ||
Boolean expression to filter the rows. | ||
Returns | ||
------- | ||
pd.Series | ||
The filtered series. | ||
""" | ||
flat = self.to_flat().query(query) | ||
if len(flat) == 0: | ||
return pd.Series([], dtype=self._series.dtype) | ||
return pack_sorted_df_into_struct(flat) | ||
|
||
def get_list_series(self, field: str) -> pd.Series: | ||
"""Get the list-array field as a Series | ||
Parameters | ||
---------- | ||
field : str | ||
Name of the field to get. | ||
Returns | ||
------- | ||
pd.Series | ||
The list-array field. | ||
""" | ||
return self._series.struct.field(field) | ||
|
||
def __getitem__(self, key: str | list[str]) -> pd.Series: | ||
if isinstance(key, list): | ||
new_array = self._series.array.view_fields(key) | ||
return pd.Series(new_array, index=self._series.index, name=self._series.name) | ||
|
||
series = self._series.struct.field(key).list.flatten() | ||
series.index = np.repeat(self._series.index.values, np.diff(self._series.array.list_offsets)) | ||
series.name = key | ||
return series | ||
|
||
def __setitem__(self, key: str, value: ArrayLike) -> None: | ||
# TODO: we can be much-much smarter about the performance here | ||
# TODO: think better about underlying pa.ChunkArray in both self._series.array and value | ||
|
||
# Everything is empty, do nothing | ||
if len(self._series) == 0 and np.ndim(value) != 0: | ||
array = pa.array(value) | ||
if len(array) == 0: | ||
return | ||
|
||
if len(self._series) == self.flat_length: | ||
raise ValueError( | ||
f"Cannot use `.nest[{key}] = value` when the series has the same count of 'list' rows as" | ||
"'flat' rows, because it is ambiguous whether the input is a 'flat' or a 'list' array. Use" | ||
"`.nest.set_flat_field()` or `.nest.set_list_field()` instead." | ||
) | ||
|
||
# Set single value for all rows | ||
if np.ndim(value) == 0: | ||
self.set_flat_field(key, value) | ||
return | ||
|
||
pa_array = pa.array(value) | ||
|
||
# Input is a flat array of values | ||
if len(pa_array) == self.flat_length: | ||
self.set_flat_field(key, pa_array) | ||
return | ||
|
||
# Input is a list-array of values | ||
if len(pa_array) == len(self._series): | ||
self.set_list_field(key, pa_array) | ||
return | ||
|
||
raise ValueError( | ||
f"Cannot set field {key} with value of length {len(pa_array)}, the value is expected to be " | ||
f"either a scalar, a 'flat' array of length {self.flat_length}, or a 'list' array of length " | ||
f"{len(self._series)}." | ||
) | ||
|
||
def __delitem__(self, key: str) -> None: | ||
self.pop_field(key) | ||
|
||
def __iter__(self) -> Generator[str, None, None]: | ||
# For some reason, .struct.dtypes is cached, so we will use NestedExtensionArray directly | ||
yield from iter(self._series.array.field_names) | ||
|
||
def __len__(self) -> int: | ||
# For some reason, .struct.dtypes is cached, so we will use NestedExtensionArray directly | ||
return len(self._series.array.field_names) |
Oops, something went wrong.