Skip to content

Commit

Permalink
add a simple vit with qknorm, since authors seem to be promoting the …
Browse files Browse the repository at this point in the history
…technique on twitter
  • Loading branch information
lucidrains committed Aug 14, 2023
1 parent 950c901 commit b194359
Showing 1 changed file with 141 additions and 0 deletions.
141 changes: 141 additions & 0 deletions vit_pytorch/simple_vit_with_qk_norm.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,141 @@
import torch
from torch import nn
import torch.nn.functional as F

from einops import rearrange
from einops.layers.torch import Rearrange

# helpers

def pair(t):
return t if isinstance(t, tuple) else (t, t)

def posemb_sincos_2d(h, w, dim, temperature: int = 10000, dtype = torch.float32):
y, x = torch.meshgrid(torch.arange(h), torch.arange(w), indexing="ij")
assert (dim % 4) == 0, "feature dimension must be multiple of 4 for sincos emb"
omega = torch.arange(dim // 4) / (dim // 4 - 1)
omega = 1.0 / (temperature ** omega)

y = y.flatten()[:, None] * omega[None, :]
x = x.flatten()[:, None] * omega[None, :]
pe = torch.cat((x.sin(), x.cos(), y.sin(), y.cos()), dim=1)
return pe.type(dtype)

# they use a query-key normalization that is equivalent to rms norm (no mean-centering, learned gamma), from vit 22B paper

# in latest tweet, seem to claim more stable training at higher learning rates
# unsure if this has taken off within Brain, or it has some hidden drawback

class RMSNorm(nn.Module):
def __init__(self, heads, dim):
super().__init__()
self.scale = dim ** 0.5
self.gamma = nn.Parameter(torch.ones(heads, 1, dim) / self.scale)

def forward(self, x):
normed = F.normalize(x, dim = -1)
return normed * self.scale * self.gamma

# classes

class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim):
super().__init__()
self.net = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Linear(hidden_dim, dim),
)
def forward(self, x):
return self.net(x)

class Attention(nn.Module):
def __init__(self, dim, heads = 8, dim_head = 64):
super().__init__()
inner_dim = dim_head * heads
self.heads = heads
self.norm = nn.LayerNorm(dim)

self.attend = nn.Softmax(dim = -1)

self.q_norm = RMSNorm(heads, dim_head)
self.k_norm = RMSNorm(heads, dim_head)

self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.to_out = nn.Linear(inner_dim, dim, bias = False)

def forward(self, x):
x = self.norm(x)

qkv = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)

q = self.q_norm(q)
k = self.k_norm(k)

dots = torch.matmul(q, k.transpose(-1, -2))

attn = self.attend(dots)

out = torch.matmul(attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)

class Transformer(nn.Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.ModuleList([
Attention(dim, heads = heads, dim_head = dim_head),
FeedForward(dim, mlp_dim)
]))
def forward(self, x):
for attn, ff in self.layers:
x = attn(x) + x
x = ff(x) + x
return self.norm(x)

class SimpleViT(nn.Module):
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, channels = 3, dim_head = 64):
super().__init__()
image_height, image_width = pair(image_size)
patch_height, patch_width = pair(patch_size)

assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.'

patch_dim = channels * patch_height * patch_width

self.to_patch_embedding = nn.Sequential(
Rearrange("b c (h p1) (w p2) -> b (h w) (p1 p2 c)", p1 = patch_height, p2 = patch_width),
nn.LayerNorm(patch_dim),
nn.Linear(patch_dim, dim),
nn.LayerNorm(dim),
)

self.pos_embedding = posemb_sincos_2d(
h = image_height // patch_height,
w = image_width // patch_width,
dim = dim,
)

self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim)

self.pool = "mean"
self.to_latent = nn.Identity()

self.linear_head = nn.LayerNorm(dim)

def forward(self, img):
device = img.device

x = self.to_patch_embedding(img)
x += self.pos_embedding.to(device, dtype=x.dtype)

x = self.transformer(x)
x = x.mean(dim = 1)

x = self.to_latent(x)
return self.linear_head(x)

0 comments on commit b194359

Please sign in to comment.