-
-
Notifications
You must be signed in to change notification settings - Fork 3.1k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add a hypersphere vit, adapted from https://arxiv.org/abs/2410.01131
- Loading branch information
1 parent
82f2fa7
commit cc17cf0
Showing
4 changed files
with
270 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,258 @@ | ||
import torch | ||
from torch import nn | ||
from torch.nn import Module, ModuleList | ||
import torch.nn.functional as F | ||
import torch.nn.utils.parametrize as parametrize | ||
|
||
from einops import rearrange, reduce | ||
from einops.layers.torch import Rearrange | ||
|
||
# functions | ||
|
||
def exists(v): | ||
return v is not None | ||
|
||
def default(v, d): | ||
return v if exists(v) else d | ||
|
||
def pair(t): | ||
return t if isinstance(t, tuple) else (t, t) | ||
|
||
def divisible_by(numer, denom): | ||
return (numer % denom) == 0 | ||
|
||
def l2norm(t, dim = -1): | ||
return F.normalize(t, dim = dim, p = 2) | ||
|
||
# for use with parametrize | ||
|
||
class L2Norm(Module): | ||
def __init__(self, dim = -1): | ||
super().__init__() | ||
self.dim = dim | ||
|
||
def forward(self, t): | ||
return l2norm(t, dim = self.dim) | ||
|
||
class NormLinear(Module): | ||
def __init__( | ||
self, | ||
dim, | ||
dim_out, | ||
norm_dim_in = True | ||
): | ||
super().__init__() | ||
self.linear = nn.Linear(dim, dim_out, bias = False) | ||
|
||
parametrize.register_parametrization( | ||
self.linear, | ||
'weight', | ||
L2Norm(dim = -1 if norm_dim_in else 0) | ||
) | ||
|
||
@property | ||
def weight(self): | ||
return self.linear.weight | ||
|
||
def forward(self, x): | ||
return self.linear(x) | ||
|
||
# attention and feedforward | ||
|
||
class Attention(Module): | ||
def __init__( | ||
self, | ||
dim, | ||
*, | ||
dim_head = 64, | ||
heads = 8, | ||
dropout = 0. | ||
): | ||
super().__init__() | ||
dim_inner = dim_head * heads | ||
self.to_q = NormLinear(dim, dim_inner) | ||
self.to_k = NormLinear(dim, dim_inner) | ||
self.to_v = NormLinear(dim, dim_inner) | ||
|
||
self.dropout = dropout | ||
|
||
self.qk_scale = nn.Parameter(torch.ones(dim_head) * (dim_head ** 0.25)) | ||
|
||
self.split_heads = Rearrange('b n (h d) -> b h n d', h = heads) | ||
self.merge_heads = Rearrange('b h n d -> b n (h d)') | ||
|
||
self.to_out = NormLinear(dim_inner, dim, norm_dim_in = False) | ||
|
||
def forward( | ||
self, | ||
x | ||
): | ||
q, k, v = self.to_q(x), self.to_k(x), self.to_v(x) | ||
|
||
q, k, v = map(self.split_heads, (q, k, v)) | ||
|
||
# query key rmsnorm | ||
|
||
q, k = map(l2norm, (q, k)) | ||
q, k = (q * self.qk_scale), (k * self.qk_scale) | ||
|
||
# scale is 1., as scaling factor is moved to s_qk (dk ^ 0.25) - eq. 16 | ||
|
||
out = F.scaled_dot_product_attention( | ||
q, k, v, | ||
dropout_p = self.dropout if self.training else 0., | ||
scale = 1. | ||
) | ||
|
||
out = self.merge_heads(out) | ||
return self.to_out(out) | ||
|
||
class FeedForward(Module): | ||
def __init__( | ||
self, | ||
dim, | ||
*, | ||
dim_inner, | ||
dropout = 0. | ||
): | ||
super().__init__() | ||
dim_inner = int(dim_inner * 2 / 3) | ||
|
||
self.dim = dim | ||
self.dropout = nn.Dropout(dropout) | ||
|
||
self.to_hidden = NormLinear(dim, dim_inner) | ||
self.to_gate = NormLinear(dim, dim_inner) | ||
|
||
self.hidden_scale = nn.Parameter(torch.ones(dim_inner)) | ||
self.gate_scale = nn.Parameter(torch.ones(dim_inner)) | ||
|
||
self.to_out = NormLinear(dim_inner, dim, norm_dim_in = False) | ||
|
||
def forward(self, x): | ||
hidden, gate = self.to_hidden(x), self.to_gate(x) | ||
|
||
hidden = hidden * self.hidden_scale | ||
gate = gate * self.gate_scale * (self.dim ** 0.5) | ||
|
||
hidden = F.silu(gate) * hidden | ||
|
||
hidden = self.dropout(hidden) | ||
return self.to_out(hidden) | ||
|
||
# classes | ||
|
||
class nViT(Module): | ||
def __init__( | ||
self, | ||
*, | ||
image_size, | ||
patch_size, | ||
num_classes, | ||
dim, | ||
depth, | ||
heads, | ||
mlp_dim, | ||
dropout = 0., | ||
channels = 3, | ||
dim_head = 64, | ||
residual_lerp_scale_init = None | ||
): | ||
super().__init__() | ||
image_height, image_width = pair(image_size) | ||
|
||
# calculate patching related stuff | ||
|
||
assert divisible_by(image_height, patch_size) and divisible_by(image_width, patch_size), 'Image dimensions must be divisible by the patch size.' | ||
|
||
patch_height_dim, patch_width_dim = (image_height // patch_size), (image_width // patch_size) | ||
patch_dim = channels * (patch_size ** 2) | ||
num_patches = patch_height_dim * patch_width_dim | ||
|
||
self.channels = channels | ||
self.patch_size = patch_size | ||
|
||
self.to_patch_embedding = nn.Sequential( | ||
Rearrange('b c (h p1) (w p2) -> b (h w) (c p1 p2)', p1 = patch_size, p2 = patch_size), | ||
nn.LayerNorm(patch_dim), | ||
nn.Linear(patch_dim, dim), | ||
nn.LayerNorm(dim), | ||
) | ||
|
||
self.abs_pos_emb = nn.Embedding(num_patches, dim) | ||
|
||
residual_lerp_scale_init = default(residual_lerp_scale_init, 1. / depth) | ||
|
||
# layers | ||
|
||
self.dim = dim | ||
self.layers = ModuleList([]) | ||
self.residual_lerp_scales = nn.ParameterList([]) | ||
|
||
for _ in range(depth): | ||
self.layers.append(ModuleList([ | ||
Attention(dim, dim_head = dim_head, heads = heads, dropout = dropout), | ||
FeedForward(dim, dim_inner = mlp_dim, dropout = dropout), | ||
])) | ||
|
||
self.residual_lerp_scales.append(nn.ParameterList([ | ||
nn.Parameter(torch.ones(dim) * residual_lerp_scale_init), | ||
nn.Parameter(torch.ones(dim) * residual_lerp_scale_init), | ||
])) | ||
|
||
self.logit_scale = nn.Parameter(torch.ones(num_classes)) | ||
|
||
self.to_pred = NormLinear(dim, num_classes) | ||
|
||
@torch.no_grad() | ||
def norm_weights_(self): | ||
for module in self.modules(): | ||
if not isinstance(module, NormLinear): | ||
continue | ||
|
||
normed = module.weight | ||
original = module.linear.parametrizations.weight.original | ||
|
||
original.copy_(normed) | ||
|
||
def forward(self, images): | ||
device = images.device | ||
|
||
tokens = self.to_patch_embedding(images) | ||
|
||
pos_emb = self.abs_pos_emb(torch.arange(tokens.shape[-2], device = device)) | ||
|
||
tokens = l2norm(tokens + pos_emb) | ||
|
||
for (attn, ff), (attn_alpha, ff_alpha) in zip(self.layers, self.residual_lerp_scales): | ||
|
||
attn_out = l2norm(attn(tokens)) | ||
tokens = l2norm(tokens.lerp(attn_out, attn_alpha)) | ||
|
||
ff_out = l2norm(ff(tokens)) | ||
tokens = l2norm(tokens.lerp(ff_out, ff_alpha)) | ||
|
||
pooled = reduce(tokens, 'b n d -> b d', 'mean') | ||
|
||
logits = self.to_pred(pooled) | ||
logits = logits * self.logit_scale * (self.dim ** 0.5) | ||
|
||
return logits | ||
|
||
# quick test | ||
|
||
if __name__ == '__main__': | ||
|
||
v = nViT( | ||
image_size = 256, | ||
patch_size = 16, | ||
num_classes = 1000, | ||
dim = 1024, | ||
depth = 6, | ||
heads = 8, | ||
mlp_dim = 2048, | ||
) | ||
|
||
img = torch.randn(4, 3, 256, 256) | ||
logits = v(img) # (4, 1000) | ||
assert logits.shape == (4, 1000) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters