Skip to content

Commit

Permalink
add the u-vit implementation with simple vit + register tokens
Browse files Browse the repository at this point in the history
  • Loading branch information
lucidrains committed Aug 7, 2024
1 parent 9992a61 commit dfc8df6
Show file tree
Hide file tree
Showing 2 changed files with 187 additions and 0 deletions.
11 changes: 11 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -2081,6 +2081,17 @@ Coming from computer vision and new to transformers? Here are some resources tha
}
```

```bibtex
@article{Bao2022AllAW,
title = {All are Worth Words: A ViT Backbone for Diffusion Models},
author = {Fan Bao and Shen Nie and Kaiwen Xue and Yue Cao and Chongxuan Li and Hang Su and Jun Zhu},
journal = {2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
year = {2022},
pages = {22669-22679},
url = {https://api.semanticscholar.org/CorpusID:253581703}
}
```

```bibtex
@misc{Rubin2024,
author = {Ohad Rubin},
Expand Down
176 changes: 176 additions & 0 deletions vit_pytorch/simple_uvit.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,176 @@
import torch
from torch import nn
from torch.nn import Module, ModuleList

from einops import rearrange, repeat, pack, unpack
from einops.layers.torch import Rearrange

# helpers

def pair(t):
return t if isinstance(t, tuple) else (t, t)

def exists(v):
return v is not None

def divisible_by(num, den):
return (num % den) == 0

def posemb_sincos_2d(h, w, dim, temperature: int = 10000, dtype = torch.float32):
y, x = torch.meshgrid(torch.arange(h), torch.arange(w), indexing="ij")
assert divisible_by(dim, 4), "feature dimension must be multiple of 4 for sincos emb"
omega = torch.arange(dim // 4) / (dim // 4 - 1)
omega = temperature ** -omega

y = y.flatten()[:, None] * omega[None, :]
x = x.flatten()[:, None] * omega[None, :]
pe = torch.cat((x.sin(), x.cos(), y.sin(), y.cos()), dim=1)
return pe.type(dtype)

# classes

def FeedForward(dim, hidden_dim):
return nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Linear(hidden_dim, dim),
)

class Attention(Module):
def __init__(self, dim, heads = 8, dim_head = 64):
super().__init__()
inner_dim = dim_head * heads
self.heads = heads
self.scale = dim_head ** -0.5
self.norm = nn.LayerNorm(dim)

self.attend = nn.Softmax(dim = -1)

self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.to_out = nn.Linear(inner_dim, dim, bias = False)

def forward(self, x):
x = self.norm(x)

qkv = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)

dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale

attn = self.attend(dots)

out = torch.matmul(attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)

class Transformer(Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim):
super().__init__()
self.depth = depth
self.norm = nn.LayerNorm(dim)
self.layers = ModuleList([])

for layer in range(1, depth + 1):
latter_half = layer >= (depth / 2 + 1)

self.layers.append(nn.ModuleList([
nn.Linear(dim * 2, dim) if latter_half else None,
Attention(dim, heads = heads, dim_head = dim_head),
FeedForward(dim, mlp_dim)
]))

def forward(self, x):

skips = []

for ind, (combine_skip, attn, ff) in enumerate(self.layers):
layer = ind + 1
first_half = layer <= (self.depth / 2)

if first_half:
skips.append(x)

if exists(combine_skip):
skip = skips.pop()
skip_and_x = torch.cat((skip, x), dim = -1)
x = combine_skip(skip_and_x)

x = attn(x) + x
x = ff(x) + x

assert len(skips) == 0

return self.norm(x)

class SimpleUViT(Module):
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, num_register_tokens = 4, channels = 3, dim_head = 64):
super().__init__()
image_height, image_width = pair(image_size)
patch_height, patch_width = pair(patch_size)

assert divisible_by(image_height, patch_height) and divisible_by(image_width, patch_width), 'Image dimensions must be divisible by the patch size.'

patch_dim = channels * patch_height * patch_width

self.to_patch_embedding = nn.Sequential(
Rearrange("b c (h p1) (w p2) -> b (h w) (p1 p2 c)", p1 = patch_height, p2 = patch_width),
nn.LayerNorm(patch_dim),
nn.Linear(patch_dim, dim),
nn.LayerNorm(dim),
)

pos_embedding = posemb_sincos_2d(
h = image_height // patch_height,
w = image_width // patch_width,
dim = dim
)

self.register_buffer('pos_embedding', pos_embedding, persistent = False)

self.register_tokens = nn.Parameter(torch.randn(num_register_tokens, dim))

self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim)

self.pool = "mean"
self.to_latent = nn.Identity()

self.linear_head = nn.Linear(dim, num_classes)

def forward(self, img):
batch, device = img.shape[0], img.device

x = self.to_patch_embedding(img)
x = x + self.pos_embedding.type(x.dtype)

r = repeat(self.register_tokens, 'n d -> b n d', b = batch)

x, ps = pack([x, r], 'b * d')

x = self.transformer(x)

x, _ = unpack(x, ps, 'b * d')

x = x.mean(dim = 1)

x = self.to_latent(x)
return self.linear_head(x)

# quick test on odd number of layers

if __name__ == '__main__':

v = SimpleUViT(
image_size = 256,
patch_size = 32,
num_classes = 1000,
dim = 1024,
depth = 7,
heads = 16,
mlp_dim = 2048
).cuda()

img = torch.randn(2, 3, 256, 256).cuda()

preds = v(img)
assert preds.shape == (2, 1000)

0 comments on commit dfc8df6

Please sign in to comment.