Skip to content

Source code and data for 《Target-Aspect-SentimentJointDetectionforAspect-BasedSentimentAnalysis 》

Notifications You must be signed in to change notification settings

lzl19971215/TAS-BERT

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

TAS-BERT

Code and data for our paper Target-Aspect-Sentiment Joint Detection for Aspect-Based Sentiment Analysis" (AAAI 2020)

Our code is based on Utilizing BERT for Aspect-Based Sentiment Analysis via Constructing Auxiliary Sentence (NAACL 2019)

Requirements

  • pytorch: 1.0.1

  • python: 3.6.8

  • tensorflow: 1.13.1 (only for creating BERT-pytorch-model)

  • pytorch-crf: 0.7.2

  • numpy: 1.16.4

  • nltk: 3.4.4

  • sklearn: 0.21.2

Data Preprocessing

  • Download uncased BERT-Based model, unpack, place the folder in the root directory and run convert_tf_checkpoint_to_pytorch.py to create BERT-pytorch-model.

  • run following commands to get preprocessed data.

    cd data
    python data_preprocessing_for_TAS.py --dataset semeval2015
    python data_preprocessing_for_TAS.py --dataset semeval2016
    cd ../
    

The preprocessed data is in folders semeval2015/three_joint/BIOsemeval2015/three_joint/TOsemeval2016/three_joint/BIO and semeval2016/three_joint/TO. BIO and TO are the two tagging schemes mentioned in our paper.

The preprocessed data structure is as follows:

Key Description
sentence_id Id of the sentence.
yes_no whether the sentence has corresponding sentiment in the corresponding aspect. The corresponding sentiment and aspect are given in aspect_sentiment.
aspect_sentiment <aspect, sentiment> pair of this line, such as "food quality positive".
sentence Content of the sentence.
ner_tags label sequence for targets that have corresponding sentiment in the corresponding aspect. The corresponding sentiment and aspect are given in aspect_sentiment.

Code Structure

  • TAS_BERT_joint.py: Program Runner.

  • modeling.py: Program Models.

  • optimization.py: Optimization for model.

  • processor.py: Data Processor.

  • tokenization.py: Tokenization, including three unknown-word-solutions.

  • evaluation_for_TSD_ASD_TASD.py: evaluation for ASD, TASD and TSD tasks.

  • evaluation_for_AD_TD_TAD/: The official evaluation tool for AD, TD and TAD tasks.

  • TAS_BERT_separate.py and evaluation_for_loss_separate.py: Separate detection for Ablation Study.

Training & Testing

If you want to train and test a joint detection model, you can use the following command:

CUDA_VISIBLE_DEVICES=0 python TAS_BERT_joint.py \
--data_dir data/semeval2016/three_joint/BIO/ \
--output_dir results/semeval2016/three_joint/BIO/my_result \
--vocab_file uncased_L-12_H-768_A-12/vocab.txt \
--bert_config_file uncased_L-12_H-768_A-12/bert_config.json \
--init_checkpoint uncased_L-12_H-768_A-12/pytorch_model.bin \
--tokenize_method word_split \
--use_crf \
--eval_test \
--do_lower_case \
--max_seq_length 128 \
--train_batch_size 24 \
--eval_batch_size 8 \
--learning_rate 2e-5 \
--num_train_epochs 30.0

The test results for each epoch will be stored in test_ep_*.txt in the output folder.

Evaluation

If you want to evaluate the test result for each epoch, you can use the following commands:

Note: We chose the epoch which performed best on the TASD task, and evaluate the result on all the subtasks.

  • If you want to evaluate on the TASD task, ASD task, TSD task ignoring implicit targets, and TSD task considering implicit targets, you can use the following command:

    python evaluation_for_TSD_ASD_TASD.py \
    --output_dir results/semeval2016/three_joint/BIO/my_result \
    --num_epochs 30 \
    --tag_schema BIO
    

The tag_schema bust be consistent with the contents in the output_dir, otherwise you will get error results.

"All tuples" correspond to "C1" in Table 3 of our paper.

"Only NULL tuples" correspond to "C2" in Table 3 of our paper.

"NO and pure O tag sequence" correspond to "C3" in Table 3 of our paper.

As for the TD, AD and TAD tasks, we use the evaluation tool provided by the SemEval2015 competition. The tool requires a Java environment.

  • First, we should convert our test results into XML file format. You can use the following command:

    cd evaluation_for_AD_TD_TAD
    python change_pre_to_xml.py \
    --gold_path ../data/semeval2016/three_joint/BIO/test_TAS.tsv \
    --pre_path ../results/semeval2016/three_joint/BIO/my_result/test_ep_23.txt \
    --gold_xml_file ABSA16_Restaurants_Test.xml \
    --pre_xml_file pred_file_2016.xml \
    --tag_schema BIO
    

    Note: the "test_ep_*.txt" is the best epoch on the TASD task.

    We will get a predication file in XML format: pred_file_2016.xml.

  • If you want to evaluate on the AD task:

    java -cp ./A.jar absa15.Do Eval ./pred_file_2016.xml ./ABSA16_Restaurants_Test.xml 1 0
    
  • If you want to evaluate on the TD task:

    java -cp ./A.jar absa15.Do Eval ./pred_file_2016.xml ./ABSA16_Restaurants_Test.xml 2 0
    
  • If you want to evaluate on the TAD task:

    java -cp ./A.jar absa15.Do Eval ./pred_file_2016.xml ./ABSA16_Restaurants_Test.xml 3 0
    

Ablation Study

If you want to try the separate models, please use the following commands:

CUDA_VISIBLE_DEVICES=0 python TAS_BERT_separate.py \
--data_dir data/semeval2016/three_joint/BIO/ \
--output_dir results/semeval2016/three_joint/BIO/my_result_AS \
--vocab_file uncased_L-12_H-768_A-12/vocab.txt \
--bert_config_file uncased_L-12_H-768_A-12/bert_config.json \
--init_checkpoint uncased_L-12_H-768_A-12/pytorch_model.bin \
--tokenize_method word_split \
--use_crf \
--subtask AS \
--eval_test \
--do_lower_case \
--max_seq_length 128 \
--train_batch_size 24 \
--eval_batch_size 8 \
--learning_rate 2e-5 \
--num_train_epochs 30.0
CUDA_VISIBLE_DEVICES=0 python TAS_BERT_separate.py \
--data_dir data/semeval2016/three_joint/BIO/ \
--output_dir results/semeval2016/three_joint/BIO/my_result_T \
--vocab_file uncased_L-12_H-768_A-12/vocab.txt \
--bert_config_file uncased_L-12_H-768_A-12/bert_config.json \
--init_checkpoint uncased_L-12_H-768_A-12/pytorch_model.bin \
--tokenize_method word_split \
--use_crf \
--subtask T \
--eval_test \
--do_lower_case \
--max_seq_length 128 \
--train_batch_size 24 \
--eval_batch_size 8 \
--learning_rate 2e-5 \
--num_train_epochs 30.0
python evaluation_for_loss_separate.py \
--output_dir_AS results/semeval2016/three_joint/BIO/my_result_AS \
--output_dir_T results/semeval2016/three_joint/BIO/my_result_T \
--num_epochs 30 \
--tag_schema BIO

About

Source code and data for 《Target-Aspect-SentimentJointDetectionforAspect-BasedSentimentAnalysis 》

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 96.4%
  • Shell 3.6%