This repository contains the deep learning models used in the DeepDive: An End-to-End Dehazing Method Using Deep Learning paper.
The datasets used to train this models are:
If you use this model in your research, please cite:
@inproceedings{goncalves2017deepdive,
title={DeepDive: An End-to-End Dehazing Method Using Deep Learning},
author={Goncalves, Lucas Teixeira and Gaya, Joel De Oliveira and Drews, Paulo and Botelho, Silvia Silva Da Costa},
booktitle={Graphics, Patterns and Images (SIBGRAPI), 2017 30th SIBGRAPI Conference on},
pages={436--441},
year={2017},
organization={IEEE}
}
To run this model, you will need:
- Tensorflow
- Python Imaging Library (PIL)
- Numpy
To run this model, simply run the main.py python code.
Arguments:
- -h, --help: View the help message and exit
- -m, --mode MODE: Specify one of the possible modes:
- train
- evaluate
- restore
- dataset_manage
- -a, --architecture ARCHITECTURE: Specify the architecture used in the model
- -d, --dataset DATASET: Specify the dataset implementation used to train the model
- -l, --loss LOSS: Specify the loss implementation used to train the model
- -o, --optimizer OPTIMIZER: Specify the optimizer implementation used to train the model
- -g, --dataset_manager DATASET_MANAGER
- -e, --evaluate EVALUATE
- --evaluate_path EVALUATE_PATH
- -p, --execution_path EXECUTION_PATH
The items highlighted in bold are obligatory for all modes except dataset_manage.