Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Added GEV and GPD distributions #124

Merged
merged 3 commits into from
Sep 14, 2024
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 6 additions & 1 deletion DESCRIPTION
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,10 @@ Authors@R:
family = "Hayes",
role = c("aut"),
comment = c(ORCID = "0000-0002-4985-5160")),
person(given = "Rob",
family = "Hyndman",
role = c("aut"),
comment = c(ORCID = "0000-0002-2140-5352")),
person(given = "Earo",
family = "Wang",
role = c("ctb"),
Expand Down Expand Up @@ -45,6 +49,7 @@ Suggests:
covr,
mvtnorm,
actuar (>= 2.0.0),
evd,
ggdist,
ggplot2
RdMacros:
Expand All @@ -54,4 +59,4 @@ BugReports: https://github.com/mitchelloharawild/distributional/issues
Encoding: UTF-8
Language: en-GB
Roxygen: list(markdown = TRUE)
RoxygenNote: 7.3.1
RoxygenNote: 7.3.2
20 changes: 20 additions & 0 deletions NAMESPACE
Original file line number Diff line number Diff line change
Expand Up @@ -138,6 +138,14 @@ S3method(dim,dist_default)
S3method(dim,dist_multinomial)
S3method(dim,dist_mvnorm)
S3method(dimnames,distribution)
S3method(distributional::cdf,dist_gev)
S3method(distributional::cdf,dist_gpd)
S3method(distributional::covariance,dist_gev)
S3method(distributional::covariance,dist_gpd)
S3method(distributional::generate,dist_gev)
S3method(distributional::generate,dist_gpd)
S3method(distributional::log_density,dist_gev)
S3method(distributional::log_density,dist_gpd)
S3method(family,dist_default)
S3method(family,distribution)
S3method(format,dist_bernoulli)
Expand All @@ -153,6 +161,8 @@ S3method(format,dist_exponential)
S3method(format,dist_f)
S3method(format,dist_gamma)
S3method(format,dist_geometric)
S3method(format,dist_gev)
S3method(format,dist_gpd)
S3method(format,dist_gumbel)
S3method(format,dist_hypergeometric)
S3method(format,dist_inflated)
Expand Down Expand Up @@ -312,6 +322,8 @@ S3method(mean,dist_exponential)
S3method(mean,dist_f)
S3method(mean,dist_gamma)
S3method(mean,dist_geometric)
S3method(mean,dist_gev)
S3method(mean,dist_gpd)
S3method(mean,dist_gumbel)
S3method(mean,dist_hypergeometric)
S3method(mean,dist_inflated)
Expand Down Expand Up @@ -408,6 +420,12 @@ S3method(skewness,dist_sample)
S3method(skewness,dist_uniform)
S3method(skewness,dist_weibull)
S3method(skewness,distribution)
S3method(stats::density,dist_gev)
S3method(stats::density,dist_gpd)
S3method(stats::median,dist_gev)
S3method(stats::median,dist_gpd)
S3method(stats::quantile,dist_gev)
S3method(stats::quantile,dist_gpd)
S3method(sum,distribution)
S3method(support,dist_categorical)
S3method(support,dist_default)
Expand Down Expand Up @@ -452,6 +470,8 @@ export(dist_exponential)
export(dist_f)
export(dist_gamma)
export(dist_geometric)
export(dist_gev)
export(dist_gpd)
export(dist_gumbel)
export(dist_hypergeometric)
export(dist_inflated)
Expand Down
2 changes: 2 additions & 0 deletions NEWS.md
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,8 @@

* `support()` now shows whether the interval of support is open or
closed (@venpopov, #97)
* Added `dist_gev()` for the Generalised Extreme Value distribution and
`dist_gpd()` for the Generalised Pareto distribution (@robjhyndman, #124).

## Improvements

Expand Down
132 changes: 132 additions & 0 deletions R/dist_gev.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,132 @@
#' The Generalized Extreme Value Distribution
#'
#' The GEV distribution function with parameters \eqn{\code{location} = a},
#' \eqn{\code{scale} = b} and \eqn{\code{shape} = s} is
#'
#' \deqn{F(x) = \exp\left[-\{1+s(x-a)/b\}^{-1/s}\right]}
#'
#' for \eqn{1+s(x-a)/b > 0}, where \eqn{b > 0}. If \eqn{s = 0} the distribution
#' is defined by continuity, giving
#'
#' \deqn{F(x) = \exp\left[-\exp\left(-\frac{x-a}{b}\right)\right]}
#'
#' The support of the distribution is the real line if \eqn{s = 0},
#' \eqn{x \geq a - b/s} if \eqn{s \neq 0}, and
#' \eqn{x \leq a - b/s} if \eqn{s < 0}.
#'
#' The parametric form of the GEV encompasses that of the Gumbel, Frechet and
#' reverse Weibull distributions, which are obtained for \eqn{s = 0},
#' \eqn{s > 0} and \eqn{s < 0} respectively. It was first introduced by
#' Jenkinson (1955).
#'
#' @references Jenkinson, A. F. (1955) The frequency distribution of the annual
#' maximum (or minimum) of meteorological elements. \emph{Quart. J. R. Met. Soc.},
#' \bold{81}, 158–171.
#' @param location the location parameter \eqn{a} of the GEV distribution.
#' @param scale the scale parameter \eqn{b} of the GEV distribution.
#' @param shape the shape parameter \eqn{s} of the GEV distribution.
#' @seealso \code{\link[evd]{gev}}
#' @examples
#' dist <- dist_gev(location = 0, scale = 1, shape = 0)
#' @export

dist_gev <- function(location, scale, shape) {
location <- vctrs::vec_cast(unname(location), double())
shape <- vctrs::vec_cast(unname(shape), double())
scale <- vctrs::vec_cast(unname(scale), double())
if (any(scale <= 0)) {
stop("The scale parameter of a GEV distribution must be strictly positive")
}
distributional::new_dist(location = location, scale = scale, shape = shape, class = "dist_gev")
}

#' @export
format.dist_gev <- function(x, digits = 2, ...) {
sprintf(
"GEV(%s, %s, %s)",
format(x[["location"]], digits = digits, ...),
format(x[["scale"]], digits = digits, ...),
format(x[["shape"]], digits = digits, ...)
)
}

#' @exportS3Method distributional::log_density
log_density.dist_gev <- function(x, at, ...) {
z <- (at - x[["location"]]) / x[["scale"]]
if (x[["shape"]] == 0) {
pdf <- -z - exp(-z)
} else {
xx <- 1 + x[["shape"]] * z
xx[xx <= 0] <- NA_real_
pdf <- -xx^(-1 / x[["shape"]]) - (1 / x[["shape"]] + 1) * log(xx)
pdf[is.na(pdf)] <- -Inf
}
pdf - log(x[["scale"]])
}

#' @exportS3Method stats::density
density.dist_gev <- function(x, at, ...) {
exp(log_density.dist_gev(x, at, ...))
}

#' @exportS3Method distributional::cdf
cdf.dist_gev <- function(x, q, ...) {
z <- (q - x[["location"]]) / x[["scale"]]
if (x[["shape"]] == 0) {
exp(-exp(-z))
} else {
exp(-pmax(1 + x[["shape"]] * z, 0)^(-1 / x[["shape"]]))
}
}

#' @exportS3Method stats::quantile
quantile.dist_gev <- function(x, p, ...) {
if (x[["shape"]] == 0) {
x[["location"]] - x[["scale"]] * log(-log(p))
} else {
x[["location"]] + x[["scale"]] * ((-log(p))^(-x[["shape"]]) - 1) / x[["shape"]]
}
}

#' @exportS3Method distributional::generate
generate.dist_gev <- function(x, times, ...) {
z <- stats::rexp(times)
if (x[["shape"]] == 0) {
x[["location"]] - x[["scale"]] * log(z)
} else {
x[["location"]] + x[["scale"]] * (z^(-x[["shape"]]) - 1) / x[["shape"]]
}
}

#' @export
mean.dist_gev <- function(x, ...) {
if (x[["shape"]] == 0) {
x[["location"]] + x[["scale"]] * 0.57721566490153286
} else if (x[["shape"]] < 1) {
x[["location"]] + x[["scale"]] * (gamma(1 - x[["shape"]]) - 1) / x[["shape"]]
} else {
Inf
}
}

#' @exportS3Method stats::median
median.dist_gev <- function(x, ...) {
if (x[["shape"]] == 0) {
x[["location"]] - x[["scale"]] * log(log(2))
} else {
x[["location"]] + x[["scale"]] * (log(2)^(-x[["shape"]]) - 1) / x[["shape"]]
}
}

#' @exportS3Method distributional::covariance
covariance.dist_gev <- function(x, ...) {
if (x[["shape"]] == 0) {
x[["scale"]]^2 * pi^2 / 6
} else if (x[["shape"]] < 0.5) {
g2 <- gamma(1 - 2 * x[["shape"]])
g1 <- gamma(1 - x[["shape"]])
x[["scale"]]^2 * (g2 - g1^2) / x[["shape"]]^2
} else {
Inf
}
}
124 changes: 124 additions & 0 deletions R/dist_gpd.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,124 @@
#' The Generalized Pareto Distribution
#'
#' The GPD distribution function with parameters \eqn{\code{location} = a},
#' \eqn{\code{scale} = b} and \eqn{\code{shape} = s} is
#'
#' \deqn{F(x) = 1 - \left(1+s(x-a)/b\right)^{-1/s}}
#'
#' for \eqn{1+s(x-a)/b > 0}, where \eqn{b > 0}. If \eqn{s = 0} the distribution
#' is defined by continuity, giving
#'
#' \deqn{F(x) = 1 - \exp\left(-\frac{x-a}{b}\right)}
#'
#' The support of the distribution is \eqn{x \geq a} if \eqn{s \geq 0}, and
#' \eqn{a \leq x \leq a -b/s} if \eqn{s < 0}.
#'
#' The Pickands–Balkema–De Haan theorem states that for a large class of
#' distributions, the tail (above some threshold) can be approximated by a GPD.
#'
#' @param location the location parameter \eqn{a} of the GPD distribution.
#' @param scale the scale parameter \eqn{b} of the GPD distribution.
#' @param shape the shape parameter \eqn{s} of the GPD distribution.
#' @seealso \code{\link[evd]{gpd}}
#' @examples
#' dist <- dist_gpd(location = 0, scale = 1, shape = 0)
#' @export

dist_gpd <- function(location, scale, shape) {
location <- vctrs::vec_cast(unname(location), double())
shape <- vctrs::vec_cast(unname(shape), double())
scale <- vctrs::vec_cast(unname(scale), double())
if (any(scale <= 0)) {
stop("The scale parameter of a GPD distribution must be strictly positive")
}
distributional::new_dist(location = location, scale = scale, shape = shape, class = "dist_gpd")
}

#' @export
format.dist_gpd <- function(x, digits = 2, ...) {
sprintf(
"GPD(%s, %s, %s)",
format(x[["location"]], digits = digits, ...),
format(x[["scale"]], digits = digits, ...),
format(x[["shape"]], digits = digits, ...)
)
}

#' @exportS3Method distributional::log_density
log_density.dist_gpd <- function(x, at, ...) {
z <- (at - x[["location"]]) / x[["scale"]]
if (x[["shape"]] == 0) {
pdf <- -z
} else {
xx <- 1 + x[["shape"]] * z
xx[xx <= 0] <- NA_real_
pdf <- -(1 / x[["shape"]] + 1) * log(xx)
pdf[is.na(pdf)] <- -Inf
}
if (x[["shape"]] >= 0) {
pdf[z < 0] <- -Inf
} else {
pdf[z < 0 | z > -1 / x[["shape"]]] <- -Inf
}
pdf - log(x[["scale"]])
}

#' @exportS3Method stats::density
density.dist_gpd <- function(x, at, ...) {
exp(log_density.dist_gpd(x, at, ...))
}

#' @exportS3Method distributional::cdf
cdf.dist_gpd <- function(x, q, ...) {
z <- pmax(q - x[["location"]], 0) / x[["scale"]]
if (x[["shape"]] == 0) {
1 - exp(-z)
} else {
1 - pmax(1 + x[["shape"]] * z, 0)^(-1 / x[["shape"]])
}
}

#' @exportS3Method stats::quantile
quantile.dist_gpd <- function(x, p, ...) {
if (x[["shape"]] == 0) {
x[["location"]] - x[["scale"]] * log(1 - p)
} else {
x[["location"]] + x[["scale"]] * ((1 - p)^(-x[["shape"]]) - 1) / x[["shape"]]
}
}

#' @exportS3Method distributional::generate
generate.dist_gpd <- function(x, times, ...) {
if (x[["shape"]] == 0) {
x[["location"]] + x[["scale"]] * stats::rexp(times)
} else {
quantile(x, stats::runif(times))
}
}

#' @export
mean.dist_gpd <- function(x, ...) {
if (x[["shape"]] < 1) {
x[["location"]] + x[["scale"]] / (1 - x[["shape"]])
} else {
Inf
}
}

#' @exportS3Method stats::median
median.dist_gpd <- function(x, ...) {
if (x[["shape"]] == 0) {
x[["location"]] - x[["scale"]] * log(0.5)
} else {
x[["location"]] + x[["scale"]] * (2^x[["shape"]] - 1) / x[["shape"]]
}
}

#' @exportS3Method distributional::covariance
covariance.dist_gpd <- function(x, ...) {
if (x[["shape"]] < 0.5) {
x[["scale"]]^2 / (1 - x[["shape"]])^2 / (1 - 2 * x[["shape"]])
} else {
Inf
}
}
47 changes: 47 additions & 0 deletions man/dist_gev.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

Loading