Skip to content

mzouink/CarND-LaneLines-P1

Repository files navigation

#Finding Lane Lines on the Road Udacity - Self-Driving Car NanoDegree

Input Image

Plotted Image

Overview

When we drive, we use our eyes to decide where to go. The lines on the road that show us where the lanes are act as our constant reference for where to steer the vehicle. Naturally, one of the first things we would like to do in developing a self-driving car is to automatically detect lane lines using an algorithm.

This project is about lane lines detection in images using Python and OpenCV.

Included files:

The Project

If you have already installed the CarND Term1 Starter Kit you should be good to go! If not, you should install the starter kit to get started on this project.

Step 1: Set up the CarND Term1 Starter Kit if you haven't already.

Step 2: Open the code in a Jupyter Notebook

You will complete the project code in a Jupyter notebook. If you are unfamiliar with Jupyter Notebooks, check out Cyrille Rossant's Basics of Jupyter Notebook and Python to get started.

Jupyter is an Ipython notebook where you can run blocks of code and see results interactively. All the code for this project is contained in a Jupyter notebook. To start Jupyter in your browser, use terminal to navigate to your project directory and then run the following command at the terminal prompt (be sure you've activated your Python 3 carnd-term1 environment as described in the CarND Term1 Starter Kit installation instructions!):

> jupyter notebook

A browser window will appear showing the contents of the current directory. Click on the file called "P1.ipynb". Another browser window will appear displaying the notebook.

About

Street Lines detection using OpenCV

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published