Skip to content

GLUE Benchmark, BPE Tokenizer, RoBERTa and WarmUp Scheduler Series

Latest
Compare
Choose a tag to compare
@DongjunLee DongjunLee released this 10 Sep 12:31
· 53 commits to master since this release

Updates:

  • Add base_config for glue
  • Add regression to model, reader and dataset
  • Add glue data readers and metrics
  • Fixed dependency pytorch-transformers==1.1.0
  • Tokenizer: BPE(Byte-Pair Encoding) Tokenizer (name: roberta)
  • Mode: roberta_for_seq_cls and roberta_for_reg (Sequence Classification and Regression)
  • BaseConfig: add roberta base model base_configs for glue tasks
  • refactor utils.make_bert_input with input_type (bert or roberta)

GLUE Report

Task (Metric) Model Result Official Result BaseConfig
CoLA (Matthew's Corr) BERT-Base 59.393 52.1 (Test set) glue/cola_bert_base.json
BERT-Large - 60.6 -
RoBERTa-Base 64.828 63.6 glue/cola_roberta_base.json
RoBERTa-Large - 68.0 -
MNLI (Accuracy) BERT-Base 83.923/84.306 84.6/83.4 (Test set) glue/mnli{m/mm}_bert_base.json
BERT-Large - 86.6/- -
RoBERTa-Base 87.305/87.236 87.6/- glue/mnli{m/mm}_roberta_base.json
RoBERTa-Large - 90.2/90.2 -
MRPC (Accuracy/F1) BERT-Base 87.5/91.282 88.9 (Test set) glue/mrpc_bert_base.json
BERT-Large - 88.0 -
RoBERTa-Base 87.745/91.496 90.2 glue/mrpc_roberta_base.json
RoBERTa-Large - 90.9 -
QNLI (Accuracy) BERT-Base 88.521 90.5 (Test set) glue/qnli_bert_base.json
BERT-Large - 92.3 -
RoBERTa-Base 90.597 92.8 glue/qnli_roberta_base.json
RoBERTa-Large - 94.7 -
QQP (Accuracy/F1) BERT-Base 90.378/87.171 71.2 (Test set) glue/qqp_bert_base.json
BERT-Large - 91.3 -
RoBERTa-Base 91.541/88.768 91.9 glue/qqp_roberta_base.json
RoBERTa-Large - 92.2 -
RTE (Accuracy) BERT-Base 69.314 66.4 (Test set) glue/rte_bert_base.json
BERT-Large - 70.4 -
RoBERTa-Base 73.646 78.7 glue/rte_roberta_base.json
RoBERTa-Large - 86.6 -
SST-2 (Accuracy) BERT-Base 92.546 93.5 (Test set) glue/sst_bert_base.json
BERT-Large - 93.2 -
RoBERTa-Base 94.495 94.8 glue/sst_roberta_base.json
RoBERTa-Large - 96.4 -
STS-B (Pearson/Spearman) BERT-Base 88.070/87.881 85.8 (Test set) glue/stsb_bert_base.json
BERT-Large - 90.0 -
RoBERTa-Base 87.033/86.904 91.2 glue/stsb_roberta_base.json
RoBERTa-Large - 92.4 -
WNLI (Accuracy) BERT-Base 56.338 65.1 (Test set) glue/wnli_bert_base.json
BERT-Large - - -
RoBERTa-Base 60.563 - glue/wnli_roberta_base.json
RoBERTa-Large - 91.3 -

Refactoring:

  • Add claf.data.dto package
    • Since the structure is defined, providing specifications with DTO helps understand the code (logic).
    • Batch, BertFeature and Helper
  • Apply dto object to all readers.
  • Fixed typo (#19, #16)
  • Beautifully redrawn the image (#14)