Releases
v0.2.0
GLUE Benchmark, BPE Tokenizer, RoBERTa and WarmUp Scheduler Series
Latest
Updates:
Add base_config
for glue
Add regression
to model, reader and dataset
Add glue data readers and metrics
Fixed dependency pytorch-transformers==1.1.0
Tokenizer: BPE(Byte-Pair Encoding) Tokenizer (name: roberta
)
Mode: roberta_for_seq_cls
and roberta_for_reg
(Sequence Classification and Regression)
BaseConfig: add roberta base model base_configs for glue tasks
refactor utils.make_bert_input
with input_type (bert or roberta)
GLUE Report
Task (Metric)
Model
Result
Official Result
BaseConfig
CoLA (Matthew's Corr )
BERT-Base
59.393
52.1 (Test set)
glue/cola_bert_base.json
BERT-Large
-
60.6
-
RoBERTa-Base
64.828
63.6
glue/cola_roberta_base.json
RoBERTa-Large
-
68.0
-
MNLI (Accuracy )
BERT-Base
83.923/84.306
84.6/83.4 (Test set)
glue/mnli{m/mm}_bert_base.json
BERT-Large
-
86.6/-
-
RoBERTa-Base
87.305/87.236
87.6/-
glue/mnli{m/mm}_roberta_base.json
RoBERTa-Large
-
90.2/90.2
-
MRPC (Accuracy/F1 )
BERT-Base
87.5/91.282
88.9 (Test set)
glue/mrpc_bert_base.json
BERT-Large
-
88.0
-
RoBERTa-Base
87.745/91.496
90.2
glue/mrpc_roberta_base.json
RoBERTa-Large
-
90.9
-
QNLI (Accuracy )
BERT-Base
88.521
90.5 (Test set)
glue/qnli_bert_base.json
BERT-Large
-
92.3
-
RoBERTa-Base
90.597
92.8
glue/qnli_roberta_base.json
RoBERTa-Large
-
94.7
-
QQP (Accuracy/F1 )
BERT-Base
90.378/87.171
71.2 (Test set)
glue/qqp_bert_base.json
BERT-Large
-
91.3
-
RoBERTa-Base
91.541/88.768
91.9
glue/qqp_roberta_base.json
RoBERTa-Large
-
92.2
-
RTE (Accuracy )
BERT-Base
69.314
66.4 (Test set)
glue/rte_bert_base.json
BERT-Large
-
70.4
-
RoBERTa-Base
73.646
78.7
glue/rte_roberta_base.json
RoBERTa-Large
-
86.6
-
SST-2 (Accuracy )
BERT-Base
92.546
93.5 (Test set)
glue/sst_bert_base.json
BERT-Large
-
93.2
-
RoBERTa-Base
94.495
94.8
glue/sst_roberta_base.json
RoBERTa-Large
-
96.4
-
STS-B (Pearson/Spearman )
BERT-Base
88.070/87.881
85.8 (Test set)
glue/stsb_bert_base.json
BERT-Large
-
90.0
-
RoBERTa-Base
87.033/86.904
91.2
glue/stsb_roberta_base.json
RoBERTa-Large
-
92.4
-
WNLI (Accuracy )
BERT-Base
56.338
65.1 (Test set)
glue/wnli_bert_base.json
BERT-Large
-
-
-
RoBERTa-Base
60.563
-
glue/wnli_roberta_base.json
RoBERTa-Large
-
91.3
-
Refactoring:
Add claf.data.dto
package
Since the structure is defined, providing specifications with DTO helps understand the code (logic).
Batch
, BertFeature
and Helper
Apply dto object to all readers.
Fixed typo (#19 , #16 )
Beautifully redrawn the image (#14 )
You can’t perform that action at this time.