Skip to content

Commit

Permalink
Site updated: 2024-12-23 21:46:41
Browse files Browse the repository at this point in the history
  • Loading branch information
neozhaoliang committed Dec 23, 2024
1 parent a8cafca commit aa0c516
Show file tree
Hide file tree
Showing 7 changed files with 33 additions and 23 deletions.
12 changes: 11 additions & 1 deletion Rouche-theorem-winding-number/index.html
Original file line number Diff line number Diff line change
Expand Up @@ -363,7 +363,7 @@ <h1>遛狗中的数学:曲线的环绕数、Rouché 定理和开映射定理</
<p>Needham 的书中还介绍了曲线 <span class="math inline">\(\gamma\)</span> 的环绕数在 <span class="math inline">\(\mathbb{C}\setminus\gamma\)</span>
的每个连通分支上都是常数。对不在 <span class="math inline">\(\gamma\)</span> 上的一点 <span class="math inline">\(z\)</span>,我们可以稍稍移动 <span class="math inline">\(z\)</span> 到另一个点 <span class="math inline">\(z'\)</span>,只要保持 <span class="math inline">\(z'\)</span> 仍然位于 <span class="math inline">\(z\)</span> 所在的连通分支内,<span class="math inline">\(\gamma\)</span> 关于 <span class="math inline">\(z\)</span><span class="math inline">\(z'\)</span>
的环绕数就一定相同。利用这个事实并结合幅角原理不难得出下面的结论:</p>
<div class="unnumbered statement corollary-unnumbered plain">
<div id="connected-component" class="unnumbered statement sta___ plain">
<p><span class="statement-heading"><span class="statement-label">推论</span>.</span><span class="statement-spah">
</span><span class="math inline">\(\gamma\)</span>
是一条简单闭曲线,内部围的区域为 <span class="math inline">\(\Omega\)</span><span class="math inline">\(f(z)\)</span> 是一个非常数的解析函数,<span class="math inline">\(f\)</span> 在包含 <span class="math inline">\(\gamma\)</span>
Expand All @@ -383,6 +383,16 @@ <h1>遛狗中的数学:曲线的环绕数、Rouché 定理和开映射定理</
是非常数的解析函数,则 <span class="math inline">\(f(U)\)</span>
也是开集。</p>
</div>
<p><strong>证明</strong>:任取 <span class="math inline">\(z_0\in
U\)</span>,记 <span class="math inline">\(w_0=f(z_0)\)</span>。由于
<span class="math inline">\(f\)</span> 不是常数,所以 <span class="math inline">\(f(z)-w_0\)</span> 的零点都是孤立的。我们可以取
<span class="math inline">\(z_0\)</span> 的一个充分小的闭圆盘 <span class="math inline">\(B_\delta=\{z\in U\mid |z-z_0|\leq\delta\}\)</span>
使得 <span class="math inline">\(f(z)-w_0\)</span><span class="math inline">\(B_\delta\)</span> 中除了 <span class="math inline">\(z_0\)</span> 以外没有其它零点。特别地,<span class="math inline">\(f(z)-w_0\)</span><span class="math inline">\(B_\delta\)</span> 的边界 <span class="math inline">\(\gamma =\{|z-z_0|=\delta\}\)</span> 上恒不为
0,从而 <span class="math inline">\(|f(z)-w_0|\)</span><span class="math inline">\(\gamma\)</span> 上有正的极小值 <span class="math inline">\(e\)</span>,即对任何 <span class="math inline">\(z\in\gamma\)</span><span class="math inline">\(|f(z)-w_0|\geq e\)</span></p>
<p>现在我们考虑 <span class="math inline">\(w_0\)</span> 的邻域 <span class="math inline">\(V_e=\{|w-w_0|&lt;e\}\)</span>。则任何 <span class="math inline">\(w_1\in V_e\)</span> 都满足 <a href="#connected-component" title="推论">推论</a> 中的条件:</p>
<p><span class="math display">\[|f(z)- w_0| \geq e &gt; |w_1-w_0|,\quad
z\in \gamma.\]</span></p>
<p>所以 <span class="math inline">\(w_1\)</span><span class="math inline">\(\gamma\)</span> 内部至少有一个原像。由 <span class="math inline">\(w_1\)</span> 的任意性可得 <span class="math inline">\(V_e\subset f(U)\)</span><span class="math inline">\(w_0\)</span><span class="math inline">\(f(U)\)</span> 中的开邻域,从而 <span class="math inline">\(f(U)\)</span> 是开集。<span class="math inline">\(\blacksquare\)</span></p>
<h1 class="unnumbered" id="bibliography">References</h1>
<div id="refs" class="references csl-bib-body hanging-indent" data-entry-spacing="0" role="list">
<div id="ref-Needham1997" class="csl-entry" role="listitem">
Expand Down
4 changes: 2 additions & 2 deletions atom.xml

Large diffs are not rendered by default.

Binary file modified drafts.zip
Binary file not shown.
Binary file modified layout.zip
Binary file not shown.
2 changes: 1 addition & 1 deletion search.xml

Large diffs are not rendered by default.

38 changes: 19 additions & 19 deletions sitemap.xml
Original file line number Diff line number Diff line change
@@ -1,6 +1,13 @@
<?xml version="1.0" encoding="UTF-8"?>
<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">

<url>
<loc>https://pywonderland.com/Rouche-theorem-winding-number/</loc>

<lastmod>2024-12-23</lastmod>

</url>

<url>
<loc>https://pywonderland.com/humphreys-coxeter-notes/</loc>

Expand Down Expand Up @@ -85,13 +92,6 @@

</url>

<url>
<loc>https://pywonderland.com/Rouche-theorem-winding-number/</loc>

<lastmod>2024-11-26</lastmod>

</url>

<url>
<loc>https://pywonderland.com/real-complex/</loc>

Expand Down Expand Up @@ -305,7 +305,7 @@

<url>
<loc>https://pywonderland.com/</loc>
<lastmod>2024-12-17</lastmod>
<lastmod>2024-12-23</lastmod>
<changefreq>daily</changefreq>
<priority>1.0</priority>
</url>
Expand All @@ -315,77 +315,77 @@

<url>
<loc>https://pywonderland.com/categories/Durrett-%E6%A6%82%E7%8E%87%E8%AE%BA%E6%89%B9%E5%88%A4/</loc>
<lastmod>2024-12-17</lastmod>
<lastmod>2024-12-23</lastmod>
<changefreq>daily</changefreq>
<priority>0.6</priority>
</url>

<url>
<loc>https://pywonderland.com/categories/pywonderland-%E9%A1%B9%E7%9B%AE/</loc>
<lastmod>2024-12-17</lastmod>
<lastmod>2024-12-23</lastmod>
<changefreq>daily</changefreq>
<priority>0.6</priority>
</url>

<url>
<loc>https://pywonderland.com/categories/Shadertoy/</loc>
<lastmod>2024-12-17</lastmod>
<lastmod>2024-12-23</lastmod>
<changefreq>daily</changefreq>
<priority>0.6</priority>
</url>

<url>
<loc>https://pywonderland.com/categories/%E7%BA%BF%E6%80%A7%E4%BB%A3%E6%95%B0/</loc>
<lastmod>2024-12-17</lastmod>
<lastmod>2024-12-23</lastmod>
<changefreq>daily</changefreq>
<priority>0.6</priority>
</url>

<url>
<loc>https://pywonderland.com/categories/%E6%9C%89%E9%99%90%E7%BE%A4%E8%A1%A8%E7%A4%BA%E4%B8%8E%E7%BB%93%E5%90%88%E4%BB%A3%E6%95%B0/</loc>
<lastmod>2024-12-17</lastmod>
<lastmod>2024-12-23</lastmod>
<changefreq>daily</changefreq>
<priority>0.6</priority>
</url>

<url>
<loc>https://pywonderland.com/categories/%E4%BB%A3%E6%95%B0/</loc>
<lastmod>2024-12-17</lastmod>
<lastmod>2024-12-23</lastmod>
<changefreq>daily</changefreq>
<priority>0.6</priority>
</url>

<url>
<loc>https://pywonderland.com/categories/%E5%8F%AF%E8%A7%86%E5%8C%96%E5%A4%8D%E5%88%86%E6%9E%90/</loc>
<lastmod>2024-12-17</lastmod>
<lastmod>2024-12-23</lastmod>
<changefreq>daily</changefreq>
<priority>0.6</priority>
</url>

<url>
<loc>https://pywonderland.com/categories/Williams-%E6%A6%82%E7%8E%87%E5%92%8C%E9%9E%85/</loc>
<lastmod>2024-12-17</lastmod>
<lastmod>2024-12-23</lastmod>
<changefreq>daily</changefreq>
<priority>0.6</priority>
</url>

<url>
<loc>https://pywonderland.com/categories/%E8%AE%A1%E6%95%B0%E7%BB%84%E5%90%88%E5%AD%A6/</loc>
<lastmod>2024-12-17</lastmod>
<lastmod>2024-12-23</lastmod>
<changefreq>daily</changefreq>
<priority>0.6</priority>
</url>

<url>
<loc>https://pywonderland.com/categories/%E5%AE%8C%E7%BE%8E%E9%87%87%E6%A0%B7/</loc>
<lastmod>2024-12-17</lastmod>
<lastmod>2024-12-23</lastmod>
<changefreq>daily</changefreq>
<priority>0.6</priority>
</url>

<url>
<loc>https://pywonderland.com/categories/Coxeter-%E7%BE%A4/</loc>
<lastmod>2024-12-17</lastmod>
<lastmod>2024-12-23</lastmod>
<changefreq>daily</changefreq>
<priority>0.6</priority>
</url>
Expand Down
Binary file modified source.zip
Binary file not shown.

0 comments on commit aa0c516

Please sign in to comment.