Skip to content

Imoto, H., Zhang, S. & Okada, M. A Computational Framework for Prediction and Analysis of Cancer Signaling Dynamics from RNA Sequencing Data—Application to the ErbB Receptor Signaling Pathway. Cancers (Basel). 12, 2878 (2020).

License

Notifications You must be signed in to change notification settings

okadalabipr/Imoto_Cancers_2020

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Imoto_Cancers_2020

This repository contains modeling code for the following paper:

  • Imoto, H.; Zhang, S.; Okada, M. A Computational Framework for Prediction and Analysis of Cancer Signaling Dynamics from RNA Sequencing Data—Application to the ErbB Receptor Signaling Pathway. Cancers 2020, 12, 2878. https://doi.org/10.3390/cancers12102878

The paper can be accessed at the Cancers website.

Description

Usage

  1. Parameter estimation

    $ cd trainig
    $ mkdir logs
    $ sh optimize_parallel.sh
  2. Visualization of simulation results

    $ cd python
    import SKBR3
    from biomass import run_simulation
    run_simulation(SKBR3, viz_type='average', show_all=False, stdev=True)
  3. Sensitivity analysis

    from biomass import run_analysis
    run_analysis(SKBR3, target='initial_condition', metric='integral', style='heatmap')

License

MIT

About

Imoto, H., Zhang, S. & Okada, M. A Computational Framework for Prediction and Analysis of Cancer Signaling Dynamics from RNA Sequencing Data—Application to the ErbB Receptor Signaling Pathway. Cancers (Basel). 12, 2878 (2020).

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published