This repository contains modeling code for the following paper:
- Imoto, H.; Zhang, S.; Okada, M. A Computational Framework for Prediction and Analysis of Cancer Signaling Dynamics from RNA Sequencing Data—Application to the ErbB Receptor Signaling Pathway. Cancers 2020, 12, 2878. https://doi.org/10.3390/cancers12102878
The paper can be accessed at the Cancers website.
-
training/
- Training model parameters using ParamEstim (v0.2.0).
- Requirements
-
python/
- Validation and prediction using BioMASS (v0.1.0).
- Requirements
- numpy
- scipy
- matplotlib
- seaborn
-
gene_expression/
- CCLE RNA-seq gene expression data used for the model individualization
-
Parameter estimation
$ cd trainig $ mkdir logs $ sh optimize_parallel.sh
-
Visualization of simulation results
$ cd python
import SKBR3 from biomass import run_simulation run_simulation(SKBR3, viz_type='average', show_all=False, stdev=True)
-
Sensitivity analysis
from biomass import run_analysis run_analysis(SKBR3, target='initial_condition', metric='integral', style='heatmap')