Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add group_points support npu. #3103

Closed
wants to merge 1 commit into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
65 changes: 65 additions & 0 deletions mmcv/ops/csrc/pytorch/npu/group_points_npu.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,65 @@
#include "pytorch_npu_helper.hpp"

using namespace NPU_NAME_SPACE;
using namespace std;

void group_points_forward_npu(int b, int c, int n, int npoints, int nsample,
const Tensor points, const Tensor idx,
Tensor out) {
// b, c, n, and npoints do not need to be passed into gatherv2,
// b, c, n, and npoints are calculated inside the operator
// gatherv2 operator in ascend needs to set axis to 0, batch_dims is 0
c10::SmallVector<int64_t, N> axis = {0};
int64_t batch_dims = 0;

auto index = at::arange(0, b);
index = index.to(points.device());
index = index.view({-1, 1, 1});
index = at::mul(index, n);
at::Tensor indices = at::add(index, idx);
indices = indices.view({-1});

at::Tensor trans_features = points.transpose(1, 2);
at::Tensor features = trans_features.contiguous();
features = features.view({b * n, c});

OpCommand cmd;
cmd.Name("GatherV2")
.Input(features)
.Input(indices)
.Input(axis)
.Output(out)
.Attr("batch_dims", batch_dims)
.Run();

at::Tensor output =
out.view({b, npoints, nsample, c}).transpose(1, 3).transpose(2, 3);
at::Tensor res = output.contiguous();
out.copy_(res);
}

void group_points_backward_npu(int b, int c, int n, int npoints, int nsample,
const Tensor grad_out, const Tensor idx, Tensor grad_features)
{
at::Tensor trans_idx = idx.view({b * npoints * nsample});
at::Tensor trans_grad_out = grad_out.permute({0, 2, 3, 1});
at::Tensor grad_out_tensor = trans_grad_out.contiguous();
grad_out_tensor = grad_out_tensor.view({b * npoints * nsample, c});
at::Tensor out = at::zeros({b, n, c}, grad_out.options());

EXEC_NPU_CMD(aclnnGroupPointsGrad, grad_out_tensor, trans_idx, b, c, n, npoints, nsample, out);

at::Tensor grad_points = out.transpose(1, 2);

grad_features.copy_(grad_points);
}

void group_points_forward_impl(int b, int c, int n, int npoints, int nsample,
const Tensor points, const Tensor idx,
Tensor out);
void group_points_backward_impl(int b, int c, int n, int npoints, int nsample,
const Tensor points, const Tensor idx,
Tensor out);

REGISTER_NPU_IMPL(group_points_forward_impl, group_points_forward_npu);
REGISTER_NPU_IMPL(group_points_backward_impl, group_points_backward_npu);
59 changes: 45 additions & 14 deletions tests/test_ops/test_group_points.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,16 +3,25 @@
import torch

from mmcv.ops import grouping_operation
from mmcv.utils import IS_CUDA_AVAILABLE, IS_NPU_AVAILABLE


@pytest.mark.skipif(
not torch.cuda.is_available(), reason='requires CUDA support')
@pytest.mark.parametrize('device', [
pytest.param(
'cuda',
marks=pytest.mark.skipif(
not IS_CUDA_AVAILABLE, reason='requires CUDA support')),
pytest.param(
'npu',
marks=pytest.mark.skipif(
not IS_NPU_AVAILABLE, reason='requires NPU support'))
])
@pytest.mark.parametrize('dtype', [torch.half, torch.float, torch.double])
def test_grouping_points(dtype):
def test_grouping_points(dtype, device):
idx = torch.tensor([[[0, 0, 0], [3, 3, 3], [8, 8, 8], [0, 0, 0], [0, 0, 0],
[0, 0, 0]],
[[0, 0, 0], [6, 6, 6], [9, 9, 9], [0, 0, 0], [0, 0, 0],
[0, 0, 0]]]).int().cuda()
[0, 0, 0]]]).int().to(device)
features = torch.tensor([[[
0.5798, -0.7981, -0.9280, -1.3311, 1.3687, 0.9277, -0.4164, -1.8274,
0.9268, 0.8414
Expand All @@ -37,9 +46,12 @@ def test_grouping_points(dtype):
-0.6646, -0.6870, -0.1125, -0.2224, -0.3445,
-1.4049, 0.4990, -0.7037, -0.9924, 0.0386
]]],
dtype=dtype).cuda()
dtype=dtype).to(device)
features.requires_grad = True

output = grouping_operation(features, idx)
output.backward(output)
grad_features = features.grad
expected_output = torch.tensor(
[[[[0.5798, 0.5798, 0.5798], [-1.3311, -1.3311, -1.3311],
[0.9268, 0.9268, 0.9268], [0.5798, 0.5798, 0.5798],
Expand All @@ -59,17 +71,36 @@ def test_grouping_points(dtype):
[[-0.6646, -0.6646, -0.6646], [0.4990, 0.4990, 0.4990],
[0.0386, 0.0386, 0.0386], [-0.6646, -0.6646, -0.6646],
[-0.6646, -0.6646, -0.6646], [-0.6646, -0.6646, -0.6646]]]],
dtype=dtype).cuda()
dtype=dtype).to(device)
expected_grad_features = torch.tensor(
[[[6.9576, 0.0000, 0.0000, -3.9933, 0.0000, 0.0000, 0.0000, 0.0000, 2.7804, 0.0000],
[65.0964, 0.0000, 0.0000, 4.4220, 0.0000, 0.0000, 0.0000, 0.0000, 6.4743, 0.0000],
[-19.5192, 0.0000, 0.0000, -5.0793, 0.0000, 0.0000, 0.0000, 0.0000, -5.0358, 0.0000]],
[[-0.4560, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, -1.1079, 0.0000, 0.0000, -5.5581],
[14.1276, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 18.2595, 0.0000, 0.0000, 8.4687],
[-7.9752, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 1.4970, 0.0000, 0.0000, 0.1158]]],
dtype=dtype).to(device)
assert torch.allclose(output, expected_output)
assert torch.allclose(grad_features, expected_grad_features)


@pytest.mark.skipif(
not torch.cuda.is_available(), reason='requires CUDA support')
@pytest.mark.parametrize('device', [
pytest.param(
'cuda',
marks=pytest.mark.skipif(
not IS_CUDA_AVAILABLE, reason='requires CUDA support')),
pytest.param(
'npu',
marks=pytest.mark.skipif(
not IS_NPU_AVAILABLE, reason='requires NPU support'))
])
@pytest.mark.parametrize('dtype', [torch.half, torch.float, torch.double])
def test_stack_grouping_points(dtype):
def test_stack_grouping_points(dtype, device):
if device == 'npu' and dtype == torch.double:
return
idx = torch.tensor([[0, 0, 0], [3, 3, 3], [8, 8, 8], [1, 1, 1], [0, 0, 0],
[2, 2, 2], [0, 0, 0], [6, 6, 6], [9, 9, 9], [0, 0, 0],
[1, 1, 1], [0, 0, 0]]).int().cuda()
[1, 1, 1], [0, 0, 0]]).int().to(device)
features = torch.tensor([[
0.5798, -0.7981, -0.9280, -1.3311, 1.3687, 0.9277, -0.4164, -1.8274,
0.9268, 0.8414
Expand All @@ -94,9 +125,9 @@ def test_stack_grouping_points(dtype):
-0.6646, -0.6870, -0.1125, -0.2224, -0.3445,
-1.4049, 0.4990, -0.7037, -0.9924, 0.0386
]],
dtype=dtype).cuda()
features_batch_cnt = torch.tensor([3, 3]).int().cuda()
indices_batch_cnt = torch.tensor([6, 6]).int().cuda()
dtype=dtype).to(device)
features_batch_cnt = torch.tensor([3, 3]).int().to(device)
indices_batch_cnt = torch.tensor([6, 6]).int().to(device)
output = grouping_operation(features, idx, features_batch_cnt,
indices_batch_cnt)
expected_output = torch.tensor(
Expand Down Expand Up @@ -160,5 +191,5 @@ def test_stack_grouping_points(dtype):
[-0.3190, -0.3190, -0.3190], [0.7798, 0.7798, 0.7798],
[-0.3693, -0.3693, -0.3693], [-0.9457, -0.9457, -0.9457],
[-0.2942, -0.2942, -0.2942], [-1.8527, -1.8527, -1.8527]]],
dtype=dtype).cuda()
dtype=dtype).to(device)
assert torch.allclose(output, expected_output)
Loading