Skip to content

p-ferreira/machine-learning-studies

Repository files navigation

Machine learning studies

  • Models of machine learning
    • Supervised learning

      • Binary classification Validation:
        • Cross validation (KFold)
        • Shuffle KFold
        • Stratified KFold
        • GroupKFold
        • Pipeline
        • GridSearchCV and RandomizedSearchCV for optimization of hyper-parameters

      Scikit:

      • Linear Support Vector Classification (Linear SVC)
      • Support Vector Classification (SVC)
      • Decision tree Classsifier
      • Dummy Classifier
      • Multinomial Naive Bayes
      • AdaBoost Classifier Multidimensional data:
        • Random Forest Classifier
        • Random Forest with SelectKBest
        • Evaluate results with Confusion Matrix
        • Random Forest with RFE (Recursive feature elimination)
        • Random Forest with RFECV (Cross-validation estimator)
        • Random Forest with PCA
        • Random Forest with TSNE
    • Unsupervised learning

      • K-Means
      • DBSCAN
      • Meanshift
      • Silhouette coefficient
      • Davies bouldin index calculation
      • Calinski Harabasz index calculation Validation:
        • Relative validation
        • Cluster structure validation
        • Cluster stability validation
    • Deep Learning Keras with Tensorflow - ReLu - Softmax - Export model to .h5 file PyTorch - ReLU - Perceptron - MLP (Multi-layer perceptron)

    • MLOps Create a web api to use a ml model using Flask and pickle

    • NLP

      • MLE
      • LaPlace
      • NLTK
      • Bigrams
      • Language detection
      • tokenizers

About

Machine learning studies

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages