You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Hello,
I am trying to run scvelo in snRNAseq. I used kb-python to prepare the counts from my fastq data. I generated an index using—-workflow nucleus, and I ran kb count with that workflow, too.
This is my code:
When I load the unfiltered adata.h5ad using:
adata_Epi_TCD35_P = ad.read_h5ad("TCD36kb_PL/counts_unfiltered/adata.h5ad", chunk_size=100000)
The object has 0 layers
adata_Epi_TCD35_P
Out[48]: AnnData object with n_obs × n_vars = 272419 × 33696
Do you have any ideas on why this is happening, please?
I am using:
packages in environment at /home/mdu4003/.conda/envs/kbpython:
I started from scratch with newest kb-python installation and I generated the index using workflow nac. I used also this workflow to generate the counts from my snRNAseq. Now I do have the layers, but instead of spliced and unspliced, I have ambiguous, nascent and mature.
How can I change the names here to use scvelo later? scvelo is looking for unsplcied and spliced. Thanks!
I copied the layers with a new name:
adata_filt.layers["unspliced"] = adata_filt.layers["nascent"]
adata_filt.layers["spliced"] = adata_filt.layers["mature"]
It seems to be solved.
Hello,
I am trying to run scvelo in snRNAseq. I used kb-python to prepare the counts from my fastq data. I generated an index using—-workflow nucleus, and I ran kb count with that workflow, too.
This is my code:
kb count -i INDEX_mm39_nucleus/index.idx -g INDEX_mm39_nucleus/transcripts_to_genes.txt -x 10xv3 --workflow nucleus --h5ad -c1 INDEX_mm39_nucleus/cdna_transcripts_to_capture.txt -c2 INDEX_mm39_nucleus/intron_transcripts_to_capture.txt -t 20 -m 64G ../scRNAseq/raw/TCD36_PL/TCD36_S1_L001_R1_001.fastq.gz ../scRNAseq/raw/TCD36_PL/TCD36_S1_L001_R2_001.fastq.gz -o /kbcount/TCD36kb_PL
When I load the unfiltered adata.h5ad using:
adata_Epi_TCD35_P = ad.read_h5ad("TCD36kb_PL/counts_unfiltered/adata.h5ad", chunk_size=100000)
The object has 0 layers
adata_Epi_TCD35_P
Out[48]: AnnData object with n_obs × n_vars = 272419 × 33696
Do you have any ideas on why this is happening, please?
I am using:
packages in environment at /home/mdu4003/.conda/envs/kbpython:
Name Version Build Channel
_libgcc_mutex 0.1 main
anndata 0.8.0 pypi_0 pypi
attrs 22.2.0 pypi_0 pypi
beautifulsoup4 4.11.2 pypi_0 pypi
bleach 6.0.0 pypi_0 pypi
ca-certificates 2023.01.10 h06a4308_0
certifi 2022.12.7 py39h06a4308_0
charset-normalizer 3.1.0 pypi_0 pypi
click 8.1.3 pypi_0 pypi
contourpy 1.0.7 pypi_0 pypi
cycler 0.11.0 pypi_0 pypi
defusedxml 0.7.1 pypi_0 pypi
fastjsonschema 2.16.3 pypi_0 pypi
fonttools 4.39.1 pypi_0 pypi
h5py 3.8.0 pypi_0 pypi
idna 3.4 pypi_0 pypi
importlib-metadata 6.0.0 pypi_0 pypi
importlib-resources 5.12.0 pypi_0 pypi
jinja2 3.1.2 pypi_0 pypi
joblib 1.2.0 pypi_0 pypi
jsonschema 4.17.3 pypi_0 pypi
jupyter-client 8.0.3 pypi_0 pypi
jupyter-core 5.2.0 pypi_0 pypi
jupyterlab-pygments 0.2.2 pypi_0 pypi
kb-python 0.28.2 pypi_0 pypi
kiwisolver 1.4.4 pypi_0 pypi
ld_impl_linux-64 2.38 h1181459_1
libffi 3.3 he6710b0_2
libgcc-ng 9.1.0 hdf63c60_0
libstdcxx-ng 9.1.0 hdf63c60_0
llvmlite 0.39.1 pypi_0 pypi
loompy 3.0.7 pypi_0 pypi
markupsafe 2.1.2 pypi_0 pypi
matplotlib 3.7.1 pypi_0 pypi
mistune 2.0.5 pypi_0 pypi
natsort 8.3.1 pypi_0 pypi
nbclient 0.7.2 pypi_0 pypi
nbconvert 7.2.10 pypi_0 pypi
nbformat 5.7.3 pypi_0 pypi
ncurses 6.3 h7f8727e_2
networkx 3.0 pypi_0 pypi
ngs-tools 1.8.5 pypi_0 pypi
numba 0.56.4 pypi_0 pypi
numpy 1.23.5 pypi_0 pypi
numpy-groupies 0.9.20 pypi_0 pypi
openssl 1.1.1t h7f8727e_0
packaging 23.0 pypi_0 pypi
pandas 1.5.3 pypi_0 pypi
pandocfilters 1.5.0 pypi_0 pypi
patsy 0.5.3 pypi_0 pypi
pillow 9.4.0 pypi_0 pypi
pip 23.0.1 py39h06a4308_0
platformdirs 3.1.1 pypi_0 pypi
plotly 5.13.1 pypi_0 pypi
pygments 2.14.0 pypi_0 pypi
pynndescent 0.5.8 pypi_0 pypi
pyparsing 3.0.9 pypi_0 pypi
pyrsistent 0.19.3 pypi_0 pypi
pysam 0.20.0 pypi_0 pypi
python 3.9.12 h12debd9_1
python-dateutil 2.8.2 pypi_0 pypi
pytz 2022.7.1 pypi_0 pypi
pyzmq 25.0.1 pypi_0 pypi
readline 8.1.2 h7f8727e_1
requests 2.28.2 pypi_0 pypi
scanpy 1.9.3 pypi_0 pypi
scikit-learn 1.2.2 pypi_0 pypi
scipy 1.10.1 pypi_0 pypi
seaborn 0.12.2 pypi_0 pypi
session-info 1.0.0 pypi_0 pypi
setuptools 65.6.3 py39h06a4308_0
shortuuid 1.0.11 pypi_0 pypi
six 1.16.0 pypi_0 pypi
soupsieve 2.4 pypi_0 pypi
sqlite 3.38.5 hc218d9a_0
statsmodels 0.13.5 pypi_0 pypi
stdlib-list 0.8.0 pypi_0 pypi
tenacity 8.2.2 pypi_0 pypi
threadpoolctl 3.1.0 pypi_0 pypi
tinycss2 1.2.1 pypi_0 pypi
tk 8.6.12 h1ccaba5_0
tornado 6.2 pypi_0 pypi
tqdm 4.65.0 pypi_0 pypi
traitlets 5.9.0 pypi_0 pypi
typing-extensions 4.5.0 pypi_0 pypi
tzdata 2022g h04d1e81_0
umap-learn 0.5.3 pypi_0 pypi
urllib3 1.26.15 pypi_0 pypi
webencodings 0.5.1 pypi_0 pypi
wheel 0.38.4 py39h06a4308_0
xz 5.2.5 h7f8727e_1
zipp 3.15.0 pypi_0 pypi
zlib 1.2.12 h7f8727e_2
Thank you very much!
The text was updated successfully, but these errors were encountered: