Skip to content

Study of NOAA' s DMSP and VIIRS data for Department of Economic Affairs India

Notifications You must be signed in to change notification settings

parthkhare/NightLights

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 

Repository files navigation

NightLights: VIIRS DMSP Comparison

Study of NOAA' s DMSP and VIIRS data for Department of Economic Affairs India


title: "DMSP VIIRS Syncronisation {WIP}" output: html_document

knitr::opts_chunk$set(echo = TRUE)
library(raster)
library(plotly)
library(rgdal)
library(maptools)
library(maps)
library(mapproj)

Basic Difference:

DMSP-OLS VIIRS DNB
Reflectance (Ratio of radiance) Radiance
Ratio (DN) Absolute Value (DNB)
1000m resolution 750 m resolution
Cloud & Light Noise Adjusted Non adjusted raw values
6 bit quantization [0 - 63 (2^6)] 13/14 bit [range:0 - 8192+ (2^13)]

Background:

Running DMSP series on nightlights from 1992-2013 has limitations, such as low spatial resolution (2.7 km ground sample distance), low radiometric resolution (six bit), a saturation effect in bright regions, lack of on-board calibration, lack of systematic recording of in-flight gain changes and lack of multiple spectral bands for discriminating lighting types lack of spectral channels suitable for discrimination of thermal sources of lighting and lack of low light imaging spectral bands suitable for discriminating lighting types. http://www.star.nesdis.noaa.gov/smcd/spb/nsun/snpp/VIIRS/VIIRS_SDR_Users_guide.pdf.

Distribution of DMSP DN

dm13 <- raster("C:/Parth/Personal/Data Mining/GoI DEA/Data/Raw/Night Lights/DMSP India/NL_2013_F18.cmp.st.tif")  
x <- dm13$NL_2013_F18.cmp.st
p <- plot_ly(x = x, type = "histogram", name = "Histogram")
p <- p %>% add_trace(x = density(x)$x, y = density(x)$y, mode = "lines", fill = "tozeroy", yaxis = "y2", name = "Density")
p <- p %>% layout(yaxis2 = list(overlaying = "y", side = "right"), title = "India DMSP:2013")
p
  • latter is an interactive plot, zoom into sections to avoid scaling distortions*

VIIRS offers a substantial number of improvements over the OLS in terms of spatial resolution, dynamic range, quantization, calibrations and the availability of spectral bands suitable for discrimination of thermal sources of light emissions.

Distribution of VIIRS DNB

vr14 <- raster("C:/Parth/Personal/Data Mining/GoI DEA/Data/Raw/Night Lights/VIIRS/India 14-15/SVDNB_20140301-20140331.avg_rade9_India.tif")  
y <- vr14$SVDNB_20140301.20140331.avg_rade9_India
plot_ly(x = x, type = "histogram", name = "Histogram", title ="A") %>% 
  add_trace(x = density(y)$x, y = density(y)$y, mode = "lines", fill = "blue", yaxis = "y2", name = "Density") %>% 
  layout(yaxis2 = list(overlaying = "y", side = "right"), title = "India VIIRS:2014")
  • latter is an interactive plot, zoom into sections to avoid scaling distortions*

Analysis Plan

  • Clip raster title by Indian boundaries
  • Reproject the data by Albers Projection
  • Re sample the 15 arc second (750m) VIIRS data to 30 arc second (1km) resolution
  • Quantization from 13 to 6 bits

Clip raster tile by Indian boundaries

More times than often when any satellite imagery data (DMSP or VIIRS) is clipped for India, there is a possibility of associated noise. Also clipped data's NA value are wrongly taken as 0 radiance/reflectance. Tile clipping to the specified geography helps in resolving this.

# India Boundaries
# ---------------------
adm <- readShapeSpatial("C:/Parth/Personal/Data Mining/GoI DEA/Data/Raw/Boundaries/State GoI/2011_State.shp")

# VIIRS 2014     
# ---------------------
vr14 <- raster("C:/Parth/Personal/Data Mining/GoI DEA/Data/Raw/Night Lights/VIIRS/India 14-15/SVDNB_20140301-20140331.avg_rade9_India.tif")  

# Clipping Tile by Indian Extent 
# ---------------------
#c1 <- crop(vr14, extent(adm))
#ras.ind <- mask(x=c1, mask=adm) 

# Clipping Tile by Indian Extent: Plot of Clipped Sample DMSP Data  
# ---------------------
ip <- "C:/Parth/Personal/Data Mining/GoI DEA/Data/Raw/Night Lights/In Process/"
clr <- raster(paste0(ip,"DMSP13sample.tif")) 
plot(clr)

Reproject the data by Albers Projection

The Albers equal-area conic projection two standard parallels. The scale and shape are not preserved, distortion is minimal between the standard parallels. Albers prjection application helps in defining uniform pixel geometry before implementing resampling

# Albers Projection
# ---------------------
aea <- '+proj=aea +lat_1=20 +lat_2=60 +lat_0=40 +lon_0=-96 +x_0=0 
+y_0=0 +datum=NAD83' 
#ra <- projectRaster(vr14, crs=aea) 

# Resultant GRID
# ---------------------
m <- map(database= "world", regions  = "India", plot=F)
map(database= "world", regions  = "India", project="albers", par=c(39, 45))
map.grid(m)

https://www.nceas.ucsb.edu/~frazier/RSpatialGuides/OverviewCoordinateReferenceSystems.pdf

Resampling: from 15 arc seconds to 30 arc second:

The following chunk converts the image pixel from 750m to 1 sq km, by creating an empty raster grid of specified geometry and then imposing night lights data onto it

ras <- raster("C:/Parth/Personal/Data Mining/GoI DEA/Data/Raw/Night Lights/VIIRS/India 14-15/SVDNB_20140301-20140331.avg_rade9_India.tif")  

# Extent Computations
# ---------------------
x_min <- extent(ras)[1]
x_max <- extent(ras)[2]
y_min <- extent(ras)[3]
y_max <- extent(ras)[4]
cell_res <- 0.008333333  # 10 km GRID
cell_res <- 0.0008333333  # 10 km GRID

# Number of Columns & Rows : Computations
# ---------------------
x_extent <-as.integer((x_max-x_min)/cell_res)
x_extent.1 <- (((x_max-x_min)/cell_res)-as.integer((x_max-x_min)/cell_res))  #Long
y_extent <- as.integer((y_max-y_min)/cell_res)
y_extent.1 <- (((y_max-y_min)/cell_res)-as.integer((y_max-y_min)/cell_res))  #Lat
n_row <- ifelse(y_extent.1>0.5,(y_extent+2),(y_extent+1))    #lat
n_col <- ifelse(x_extent.1>0.5,(x_extent+2),(x_extent+1))    #long

# Empty Raster
# ---------------------
ras1 <- raster(nrow=n_row,ncol=n_col)
extent(ras1) <- extent(ras)

# Resampling from 750m to 10km
#ras2 <- resample(ras,ras1,method='bilinear')
#extent(ras2) <- extent(ras)
#writeRaster(ras2,filename = "Mar2014.tif",format="GTiff",overwrite=TRUE) 

Quantization

Unfortunately there is no deinfed package in R for bit transformation. The results for the same will be shared in here shortly

Appendix: Techincal Notes

  • Digital Number (DMSP): is a ratio of Upwelling and Downwelling Radiance therefore it is a unitless ratio measuring net reflectance

FIN

About

Study of NOAA' s DMSP and VIIRS data for Department of Economic Affairs India

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published