RPresto is a DBI-based adapter for the open source distributed SQL query engine Presto for running interactive analytic queries.
RPresto is both on CRAN and github.
For the CRAN version, you can use
install.packages("RPresto")
You can install the development version of RPresto from GitHub with:
# install.packages("devtools")
devtools::install_github("prestodb/RPresto")
The following examples assume that you have a in-memory Presto server set up locally. It’s the simplest server which stores all data and metadata in RAM on workers and both are discarded when Presto restarts. If you don’t have one set up, please refer to the memory connector documentation.
# Load libaries and connect to Presto
library(RPresto)
library(DBI)
con <- DBI::dbConnect(
drv = RPresto::Presto(),
host = "http://localhost",
port = 8080,
user = Sys.getenv("USER"),
catalog = "memory",
schema = "default"
)
There are two levels of APIs: DBI
and dplyr
.
The easiest and most flexible way of executing a SELECT
query is using
a dbGetQuery()
call. It
returns the query result in a tibble
.
DBI::dbGetQuery(con, "SELECT CAST(3.14 AS DOUBLE) AS pi")
#> # A tibble: 1 × 1
#> pi
#> <dbl>
#> 1 3.14
dbWriteTable()
can be
used to write a small data frame into a Presto table.
# Writing iris data frame into Presto
DBI::dbWriteTable(con, "iris", iris)
dbExistsTable()
checks if a table exists.
DBI::dbExistsTable(con, "iris")
#> [1] TRUE
dbReadTable()
reads the
entire table into R. It’s essentially a SELECT *
query on the table.
DBI::dbReadTable(con, "iris")
#> # A tibble: 150 × 5
#> sepal.length sepal.width petal.length petal.width species
#> <dbl> <dbl> <dbl> <dbl> <chr>
#> 1 5.1 3.5 1.4 0.2 setosa
#> 2 4.9 3 1.4 0.2 setosa
#> 3 4.7 3.2 1.3 0.2 setosa
#> 4 4.6 3.1 1.5 0.2 setosa
#> 5 5 3.6 1.4 0.2 setosa
#> 6 5.4 3.9 1.7 0.4 setosa
#> 7 4.6 3.4 1.4 0.3 setosa
#> 8 5 3.4 1.5 0.2 setosa
#> 9 4.4 2.9 1.4 0.2 setosa
#> 10 4.9 3.1 1.5 0.1 setosa
#> # … with 140 more rows
dbRemoveTable()
drops
the table from Presto.
DBI::dbRemoveTable(con, "iris")
You can execute a statement and returns the number of rows affected
using dbExecute()
.
# Create an empty table using CREATE TABLE
DBI::dbExecute(
con, "CREATE TABLE testing_table (field1 BIGINT, field2 VARCHAR)"
)
#> [1] 0
dbExecute()
returns the number of rows affected by the statement.
Since a CREATE TABLE
statement creates an empty table, it returns 0.
DBI::dbExecute(
con,
"INSERT INTO testing_table VALUES (1, 'abc'), (2, 'xyz')"
)
#> [1] 2
Since 2 rows are inserted into the table, it returns 2.
# Check the previous INSERT statment works
DBI::dbReadTable(con, "testing_table")
#> # A tibble: 2 × 2
#> field1 field2
#> <int> <chr>
#> 1 1 abc
#> 2 2 xyz
We also include dplyr
database backend integration (which is mainly
implemented using the dbplyr
package).
# Load packages
library(dplyr)
library(dbplyr)
We can use
dplyr::copy_to()
to write a local data frame to a PrestoConnection
and immediately
create a remote table on it.
# Add mtcars to Presto
if (DBI::dbExistsTable(con, "mtcars")) {
DBI::dbRemoveTable(con, "mtcars")
}
tbl.mtcars <- dplyr::copy_to(dest = con, df = mtcars, name = "mtcars")
# colnames() gives the column names
tbl.mtcars %>% colnames()
#> [1] "mpg" "cyl" "disp" "hp" "drat" "wt" "qsec" "vs" "am" "gear"
#> [11] "carb"
dplyr::tbl()
also
work directly on the PrestoConnection
.
# Treat "iris" in Presto as a remote data source that dplyr can now manipulate
if (!DBI::dbExistsTable(con, "iris")) {
DBI::dbWriteTable(con, "iris", iris)
}
tbl.iris <- dplyr::tbl(con, "iris")
tbl.iris %>% colnames()
#> [1] "sepal.length" "sepal.width" "petal.length" "petal.width" "species"
# dplyr verbs can be applied onto the remote data source
tbl.iris %>%
group_by(species) %>%
summarize(
mean_sepal_length = mean(sepal.length, na.rm = TRUE)
) %>%
arrange(species) %>%
collect()
#> # A tibble: 3 × 2
#> species mean_sepal_length
#> <chr> <dbl>
#> 1 setosa 5.01
#> 2 versicolor 5.94
#> 3 virginica 6.59
RPresto’s handling of BIGINT
(i.e. 64-bit integers) is similar to
other DBI packages
(e.g. bigrquery
,
RPostgres
). We
provide a bigint
argument that users can use in multiple interfaces to
specify how they want BIGINT
typed data to be translated into R.
The bigint
argument takes one of the following 4 possible values.
-
bigint = "integer"
is the default setting. It translatesBIGINT
to R’s native integer type (i.e. 32-bit integer). The range of 32-bit integer is[-2,147,483,648, 2,147,483,647]
which should cover most integer use cases. -
In case that you need to represent integer values outside of the 32-bit integer range, you have 2 options:
bigint = "numeric"
which translates the number into adouble
floating-point type in R; andbigint = "integer64"
which packages the number using thebit64::integer64
class. Note that both of those two approaches actually the same precision-preservation range:+/-(2^53-1) = +/-9,007,199,254,740,991
, due to the fact that the Presto REST API uses JSON to encode the number and JSON has a limit at 53 bits (rather than 64 bits). -
bigint = "character"
casts the number into a string. This is most useful whenBIGINT
is used to represent an ID rather than a real arithmetic number.
The DBI interface function dbGetQuery()
is the most fundamental
interface whereby bigint
can be specified. All other interfaces are
either built on top of dbGetQuery()
or only take effect when used with
dbGetQuery()
.
# BIGINT within the 32-bit integer range is simply translated into integer
DBI::dbGetQuery(con, "SELECT CAST(1 AS BIGINT) AS small_bigint")
#> # A tibble: 1 × 1
#> small_bigint
#> <int>
#> 1 1
# BIGINT outside of the 32-bit integer range generates a warning and returns NA
# when bigint is not specified
DBI::dbGetQuery(con, "SELECT CAST(POW(2, 31) AS BIGINT) AS overflow_bigint")
#> Warning in as.integer.integer64(x): NAs produced by integer overflow
#> # A tibble: 1 × 1
#> overflow_bigint
#> <int>
#> 1 NA
# Using bigint to specify numeric or integer64 translations
DBI::dbGetQuery(
con, "SELECT CAST(POW(2, 31) AS BIGINT) AS bigint_numeric",
bigint = "numeric"
)
#> # A tibble: 1 × 1
#> bigint_numeric
#> <dbl>
#> 1 2147483648
DBI::dbGetQuery(
con, "SELECT CAST(POW(2, 31) AS BIGINT) AS bigint_integer64",
bigint = "integer64"
)
#> # A tibble: 1 × 1
#> bigint_integer64
#> <int64>
#> 1 2147483648
When used with the dplyr
interface, bigint
can be specified in two
places.
- Users can pass the
bigint
argument todbConnect()
when creating thePrestoConnection
. All queries that use the connection later will use the specifiedbigint
setting.
con.bigint <- DBI::dbConnect(
drv = RPresto::Presto(),
host = "http://localhost",
port = 8080,
user = Sys.getenv("USER"),
catalog = "memory",
schema = "default",
# bigint can be specified in dbConnect
bigint = "integer64"
)
# BIGINT outside of the 32-bit integer range is automatically translated to
# integer64, per the connection setting earlier
DBI::dbGetQuery(
con.bigint, "SELECT CAST(POW(2, 31) AS BIGINT) AS bigint_integer64"
)
#> # A tibble: 1 × 1
#> bigint_integer64
#> <int64>
#> 1 2147483648
- If you only want to specify
bigint
for a particular query when using thedplyr
interface without affecting other queries, you can passbigint
to thecollect()
call.
tbl.bigint <- dplyr::tbl(
con, sql("SELECT CAST(POW(2, 31) AS BIGINT) AS bigint")
)
# Default collect() generates a warning and returns NA
dplyr::collect(tbl.bigint)
#> Warning in as.integer.integer64(x): NAs produced by integer overflow
#> # A tibble: 1 × 1
#> bigint
#> <int>
#> 1 NA
# Passing bigint to collect() specifies BIGINT treatment
dplyr::collect(tbl.bigint, bigint = "integer64")
#> # A tibble: 1 × 1
#> bigint
#> <int64>
#> 1 2147483648
To connect to Trino you must set the use.trino.headers
parameter so
RPresto
knows to send the correct headers to the server. Otherwise all
the same functionality is supported.
con.trino <- DBI::dbConnect(
RPresto::Presto(),
use.trino.headers = TRUE,
host = "http://localhost",
port = 8080,
user = Sys.getenv("USER"),
schema = "<schema>",
catalog = "<catalog>",
source = "<source>"
)
To pass extraCredentials that gets added to the
X-Presto-Extra-Credential
header use the extra.credentials
parameter
so RPresto
will add that to the header while creating the
PrestoConnection
.
Set use.trino.headers
if you want to pass extraCredentials through the
X-Trino-Extra-Credential
header.
con <- DBI::dbConnect(
RPresto::Presto(),
host = "http://localhost",
port = 7777,
user = Sys.getenv("USER"),
schema = "<schema>",
catalog = "<catalog>",
source = "<source>",
extra.credentials = "test.token.foo=bar",
)
Assuming that you have Kerberos already set up with the Presto
coordinator, you can use RPresto
with Kerberos by passing a Kerberos
config header to the request.config
argument of dbConnect()
. We
provide a convenient wrapper kerberos_configs()
to further simplify
the workflow.
con <- DBI::dbConnect(
RPresto::Presto(),
host = "http://localhost",
port = 7777,
user = Sys.getenv("USER"),
schema = "<schema>",
catalog = "<catalog>",
source = "<source>",
request.config = kerberos_configs()
)
Presto exposes its interface via a REST based API1. We utilize the
httr package to make the API calls and
use jsonlite to reshape the data
into a tibble
.
RPresto has been tested on Presto 0.100.
RPresto is BSD-licensed.
Footnotes
-
See https://github.com/prestodb/presto/wiki/HTTP-Protocol for a description of the API. ↩