The ComfyUI-to-Python-Extension
is a powerful tool that translates ComfyUI workflows into executable Python code. Designed to bridge the gap between ComfyUI's visual interface and Python's programming environment, this script facilitates the seamless transition from design to code execution. Whether you're a data scientist, a software developer, or an AI enthusiast, this tool streamlines the process of implementing ComfyUI workflows in Python.
Convert this:
To this:
import random
import torch
import sys
sys.path.append("../")
from nodes import (
VAEDecode,
KSamplerAdvanced,
EmptyLatentImage,
SaveImage,
CheckpointLoaderSimple,
CLIPTextEncode,
)
def main():
with torch.inference_mode():
checkpointloadersimple = CheckpointLoaderSimple()
checkpointloadersimple_4 = checkpointloadersimple.load_checkpoint(
ckpt_name="sd_xl_base_1.0.safetensors"
)
emptylatentimage = EmptyLatentImage()
emptylatentimage_5 = emptylatentimage.generate(
width=1024, height=1024, batch_size=1
)
cliptextencode = CLIPTextEncode()
cliptextencode_6 = cliptextencode.encode(
text="evening sunset scenery blue sky nature, glass bottle with a galaxy in it",
clip=checkpointloadersimple_4[1],
)
cliptextencode_7 = cliptextencode.encode(
text="text, watermark", clip=checkpointloadersimple_4[1]
)
checkpointloadersimple_12 = checkpointloadersimple.load_checkpoint(
ckpt_name="sd_xl_refiner_1.0.safetensors"
)
cliptextencode_15 = cliptextencode.encode(
text="evening sunset scenery blue sky nature, glass bottle with a galaxy in it",
clip=checkpointloadersimple_12[1],
)
cliptextencode_16 = cliptextencode.encode(
text="text, watermark", clip=checkpointloadersimple_12[1]
)
ksampleradvanced = KSamplerAdvanced()
vaedecode = VAEDecode()
saveimage = SaveImage()
for q in range(10):
ksampleradvanced_10 = ksampleradvanced.sample(
add_noise="enable",
noise_seed=random.randint(1, 2**64),
steps=25,
cfg=8,
sampler_name="euler",
scheduler="normal",
start_at_step=0,
end_at_step=20,
return_with_leftover_noise="enable",
model=checkpointloadersimple_4[0],
positive=cliptextencode_6[0],
negative=cliptextencode_7[0],
latent_image=emptylatentimage_5[0],
)
ksampleradvanced_11 = ksampleradvanced.sample(
add_noise="disable",
noise_seed=random.randint(1, 2**64),
steps=25,
cfg=8,
sampler_name="euler",
scheduler="normal",
start_at_step=20,
end_at_step=10000,
return_with_leftover_noise="disable",
model=checkpointloadersimple_12[0],
positive=cliptextencode_15[0],
negative=cliptextencode_16[0],
latent_image=ksampleradvanced_10[0],
)
vaedecode_17 = vaedecode.decode(
samples=ksampleradvanced_11[0], vae=checkpointloadersimple_12[2]
)
saveimage_19 = saveimage.save_images(
filename_prefix="ComfyUI", images=vaedecode_17[0]
)
if __name__ == "__main__":
main()
- Streamlining the process for creating a lean app or pipeline deployment that uses a ComfyUI workflow
- Creating programmatic experiments for various prompt/parameter values
- Creating large queues for image generation (For example, you could adjust the script to generate 1000 images without clicking ctrl+enter 1000 times)
- Easily expanding or iterating on your architecture in Python once a foundational workflow is in place in the GUI
- Generate .py file directly from the ComfyUI Web App
- Dynamically change
comfyui_to_python.py
parameters with CLI arguments - Hotfix to handle nodes that accept kwargs.
- Updates to adhere to latest changes from
ComfyUI
- Use all the custom nodes!
- Custom nodes are now supported. If you run into any issues with code execution, first ensure that the each node works as expected in the GUI. If it works in the GUI, but not in the generated script, please submit an issue.
-
Navigate to your
ComfyUI/custom_nodes
directory -
Clone this repo
git clone https://github.com/pydn/ComfyUI-to-Python-Extension.git
After cloning the repo, your
ComfyUI
directory should look like this:/comfy /comfy_extras /custom_nodes --/ComfyUI-to-Python-Extension /input /models /output /script_examples /web .gitignore LICENSE README.md comfyui_screenshot.png cuda_mollac.py execution.py extra_model_paths.yaml.example folder_paths.py latent_preview.py main.py nodes.py requirements.txt server.py
-
Launch ComfyUI
-
Load your favorite workflow and click
Save As Script
-
Type your desired file name into the pop up screen.
-
Move .py file from your downloads folder to your
ComfyUI
directory. -
Now you can execute the newly created .py file to generate images without launching a server.
-
Navigate to the
ComfyUI-to-Python-Extension
folder and install requirementspip install -r requirements.txt
-
Launch ComfyUI, click the gear icon over
Queue Prompt
, then checkEnable Dev mode Options
. THE SCRIPT WILL NOT WORK IF YOU DO NOT ENABLE THIS OPTION!
-
Load up your favorite workflows, then click the newly enabled
Save (API Format)
button under Queue Prompt -
Move the downloaded .json workflow file to your
ComfyUI/ComfyUI-to-Python-Extension
folder -
If needed, add arguments when executing
comfyui_to_python.py
to update the defaultinput_file
andoutput_file
to match your .json workflow file and desired .py file name. By default, the script will look for a file calledworkflow_api.json
. You can also update thequeue_size
variable to your desired number of images that you want to generate in a single script execution. By default, the scripts will generate 10 images. Runpython comfyui_to_python.py --help
for more details.
6a. Run the script with default arguments:
python comfyui_to_python.py
6b. Run the script with optional arguments:
python comfyui_to_python.py --input_file "workflow_api (2).json" --output_file my_workflow.py --queue_size 100
-
After running
comfyui_to_python.py
, a new .py file will be created in the current working directory. If you made no changes, look forworkflow_api.py
. -
Now you can execute the newly created .py file to generate images without launching a server.