Skip to content
Irixo edited this page Dec 26, 2020 · 1 revision

memory_profiler exposes a number of functions to be used in third-party code.

memory_usage(proc=-1, interval=.1, timeout=None) returns the memory usage over a time interval. The first argument, proc represents what should be monitored. This can either be the PID of a process (not necessarily a Python program), a string containing some python code to be evaluated or a tuple (f, args, kw) containing a function and its arguments to be evaluated as f(*args, **kw). For example,

>>> from memory_profiler import memory_usage
>>> mem_usage = memory_usage(-1, interval=.2, timeout=1)
>>> print(mem_usage)
    [7.296875, 7.296875, 7.296875, 7.296875, 7.296875]

Here I've told memory_profiler to get the memory consumption of the current process over a period of 1 second with a time interval of 0.2 seconds. As PID I've given it -1, which is a special number (PIDs are usually positive) that means current process, that is, I'm getting the memory usage of the current Python interpreter. Thus I'm getting around 7MB of memory usage from a plain python interpreter. If I try the same thing on IPython (console) I get 29MB, and if I try the same thing on the IPython notebook it scales up to 44MB.

If you'd like to get the memory consumption of a Python function, then you should specify the function and its arguments in the tuple (f, args, kw). For example:

>>> # define a simple function
>>> def f(a, n=100):
    ...     import time
    ...     time.sleep(2)
    ...     b = [a] * n
    ...     time.sleep(1)
    ...     return b
    ...
>>> from memory_profiler import memory_usage
>>> memory_usage((f, (1,), {'n' : int(1e6)}))

This will execute the code f(1, n=int(1e6)) and return the memory consumption during this execution.

Clone this wiki locally