Skip to content

Code for our TPAMI 2022 paper An Intermediate-level Attack Framework on The Basis of Linear Regression.

Notifications You must be signed in to change notification settings

qizhangli/ila-plus-plus-lr

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ILA-plus-plus-LR

Code for our TPAMI 2022 paper An Intermediate-level Attack Framework on The Basis of Linear Regression.

Requirements

  • Python 3.8.8
  • PyTorch 1.7.1
  • Torchvision 0.8.2
  • Joblib 1.1.0
  • Sklearn

Datasets

Select images from ImageNet validation set, and write .csv file as following:

class_index, class, image_name
0,n01440764,ILSVRC2012_val_00002138.JPEG
2,n01484850,ILSVRC2012_val_00004329.JPEG
...

Attack and Evaluate

Baseline Attacks

Perform different baseline attacks (IFGSM/PGD/LinBP) with restarts under $\ell_\infty $ or $\ell_2$ constraint:

python attack_baseline.py -h
usage: attack_baseline.py [-h] [--epsilon EPSILON] [--niters NITERS] [--batch-size BATCH_SIZE] [--save-dir SAVE_DIR] [--force] [--seed SEED] [--constraint {linf,l2}] [--method {IFGSM,PGD,LinBP}] [--linbp-layer LINBP_LAYER] [--restart RESTART]
                          [--data-dir DATA_DIR] [--data-info-dir DATA_INFO_DIR] [--source-model-dir SOURCE_MODEL_DIR]

optional arguments:
  -h, --help            show this help message and exit
  --epsilon EPSILON
  --niters NITERS
  --batch-size BATCH_SIZE
  --save-dir SAVE_DIR
  --force
  --seed SEED
  --constraint {linf,l2}
  --method {IFGSM,PGD,LinBP}
  --linbp-layer LINBP_LAYER
  --restart RESTART
  --data-dir DATA_DIR
  --data-info-dir DATA_INFO_DIR
  --source-model-dir SOURCE_MODEL_DIR

where --data-info-dir is the .csv file of selected images.

ILA++-LR Attack

Perform our ILA++-LR with different linear regression methods (RR/SVR/ElasticNet) under $\ell_\infty $ or $\ell_2$ constraint:

python3 attack_ilapplr.py -h  
usage: attack_ilapplr.py [-h] [--epsilon EPSILON] [--niters NITERS] [--batch-size BATCH_SIZE] [--save-dir SAVE_DIR] [--force] [--seed SEED] [--constraint {linf,l2}] [--history-dir HISTORY_DIR] [--ila-layer ILA_LAYER] [--lr-method {RR,SVR,ElasticNet}]
                         [--njobs NJOBS] [--random-start] [--data-dir DATA_DIR] [--data-info-dir DATA_INFO_DIR] [--source-model-dir SOURCE_MODEL_DIR]

optional arguments:
  -h, --help            show this help message and exit
  --epsilon EPSILON
  --niters NITERS
  --batch-size BATCH_SIZE
  --save-dir SAVE_DIR
  --force
  --seed SEED
  --constraint {linf,l2}
  --history-dir HISTORY_DIR
  --ila-layer ILA_LAYER
  --lr-method {RR,SVR,ElasticNet}
  --njobs NJOBS
  --random-start
  --data-dir DATA_DIR
  --data-info-dir DATA_INFO_DIR
  --source-model-dir SOURCE_MODEL_DIR

where the --history-dir is the directory of adversarial examples generated by baseline attacks, and the --njobs is the number of multi-processing for doing linear regression.

Evaluation

Evaluate the success rate of adversarial examples:

python3 test.py -h          
usage: test.py [-h] [--dir DIR] [--njobs NJOBS] [--seed SEED] [--test-log TEST_LOG] [--victim-dir VICTIM_DIR]

optional arguments:
  -h, --help            show this help message and exit
  --dir DIR
  --njobs NJOBS
  --seed SEED
  --test-log TEST_LOG
  --victim-dir VICTIM_DIR

Acknowledgements

The following resources are very helpful for our work:

Citation

Please cite our work in your publications if it helps your research:

@article{guo2022intermediate,
  title={An Intermediate-level Attack Framework on The Basis of Linear Regression},
  author={Guo, Yiwen and Li, Qizhang and Zuo, Wangmeng and Chen, Hao},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
  year={2022},
  publisher={IEEE}
}

@inproceedings{li2020yet,
  title={Yet Another Intermediate-Level Attack},
  author={Li, Qizhang and Guo, Yiwen and Chen, Hao},
  booktitle={ECCV},
  year={2020}
}

About

Code for our TPAMI 2022 paper An Intermediate-level Attack Framework on The Basis of Linear Regression.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages