Skip to content

Commit

Permalink
Update documentation
Browse files Browse the repository at this point in the history
  • Loading branch information
Unknown committed Mar 24, 2024
0 parents commit 5f76383
Show file tree
Hide file tree
Showing 226 changed files with 38,166 additions and 0 deletions.
4 changes: 4 additions & 0 deletions .buildinfo
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
# Sphinx build info version 1
# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done.
config: de6c4b3ab3e301e28822d96117a7d61f
tags: 645f666f9bcd5a90fca523b33c5a78b7
Empty file added .nojekyll
Empty file.
12 changes: 12 additions & 0 deletions _sources/api/options.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,12 @@
==================================
Options Calibration and Pricing
==================================


VolSurface
==================

.. module:: quantflow.options.surface

.. autoclass:: VolSurface
:members:
10 changes: 10 additions & 0 deletions _sources/api/overview.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,10 @@

API Reference
==============

.. toctree::
:maxdepth: 2

sp
options
utils
75 changes: 75 additions & 0 deletions _sources/api/sp.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,75 @@
==================================
Stochastic Process API Reference
==================================


.. module:: quantflow.sp.base


StochasticProcess
==================

.. autoclass:: StochasticProcess
:members:


StochasticProcess1d
=====================

.. autoclass:: StochasticProcess1d
:members:


IntensityProcess
=====================

.. autoclass:: IntensityProcess
:members:


WeinerProcess
=====================

.. module:: quantflow.sp.weiner

.. autoclass:: WeinerProcess
:members:


PoissonProcess
=====================

.. module:: quantflow.sp.poisson

.. autoclass:: PoissonProcess
:members:


CompoundPoissonProcess
=======================

.. module:: quantflow.sp.poisson

.. autoclass:: CompoundPoissonProcess
:members:


Heston
=======================

.. module:: quantflow.sp.heston

.. autoclass:: Heston
:members:


JumpDiffision
=======================

.. module:: quantflow.sp.jump_diffusion

.. autoclass:: JumpDiffision
:members:

.. autoclass:: Merton
:members:
21 changes: 21 additions & 0 deletions _sources/api/utils.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,21 @@
===========
Utilities
===========


Paths
==================

.. module:: quantflow.utils.paths

.. autoclass:: Paths
:members:


Marginal1D
==================

.. module:: quantflow.utils.marginal

.. autoclass:: Marginal1D
:members:
204 changes: 204 additions & 0 deletions _sources/applications/calibration.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,204 @@
---
jupytext:
formats: ipynb,md:myst
text_representation:
extension: .md
format_name: myst
format_version: 0.13
jupytext_version: 1.14.7
kernelspec:
display_name: Python 3 (ipykernel)
language: python
name: python3
---

# Calibration

Early pointers

* https://github.com/rlabbe/filterpy
* [filterpy book](https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python)

+++

## Calibrating ABC

For calibration we use {cite:p}`ukf`.
Lets consider the Heston model as a test case

```{code-cell} ipython3
from quantflow.sp.heston import Heston
pr = Heston.create(vol=0.6, kappa=1.3, sigma=0.8, rho=-0.6)
pr.variance_process.is_positive
```

The Heston model is a classical example where the calibration of parameters requires to deal with the estimation of an unobserved random variable, the stochastic variance. The model can be discretized as follow:

\begin{align}
d \nu_t &= \kappa\left(\theta -\nu_t\right) dt + \sigma \sqrt{\nu_t} d z_t \\
d s_t &= -\frac{\nu_t}{2}dt + \sqrt{\nu_t} d w_t \\
{\mathbb E}\left[d w_t d z_t\right] &= \rho dt
\end{align}

noting that

\begin{equation}
d z_t = \rho d w_t + \sqrt{1-\rho^2} d b_t
\end{equation}

which leads to

\begin{align}
d \nu_t &= \kappa\left(\theta -\nu_t\right) dt + \sigma \sqrt{\nu_t} \rho d w_t + \sigma \sqrt{\nu_t} \sqrt{1-\rho^2} d b_t \\
d s_t &= -\frac{\nu_t}{2}dt + \sqrt{\nu_t} d w_t \\
\end{align}

and finally

\begin{align}
d \nu_t &= \kappa\left(\theta -\nu_t\right) dt + \sigma \rho \frac{\nu_t}{2} dt + \sigma \sqrt{\nu_t} \sqrt{1-\rho^2} d b_t + \sigma \rho d s_t\\
d s_t &= -\frac{\nu_t}{2}dt + \sqrt{\nu_t} d w_t \\
\end{align}

Our problem is to find the *best* estimate of $\nu_t$ given by ths equation based on the observations $s_t$.

The Heston model is a dynamic model which can be represented by a state-space form: $X_t$ is the state while $Z_t$ is the observable

\begin{align}
X_{t+1} &= f\left(X_t, \Theta\right) + B^x_t\\
Z_t &= h\left(X_t, \Theta\right) + B^z_t \\
B^x_t &= {\cal N}\left(0, Q_t\right) \\
B^z_t &= {\cal N}\left(0, R_t\right) \\
\end{align}

$f$ is the *state transition equation* while $h$ is the *measurement equation*.

+++

the state equation is given by

\begin{align}
X_{t+1} &= \left[\begin{matrix}\kappa\left(\theta\right) dt \\ 0\end{matrix}\right] +
\end{align}

```{code-cell} ipython3
[p for p in pr.variance_process.parameters]
```

```{code-cell} ipython3
```

## Calibration against historical timeseries

We calibrate the Heston model agais historical time series, in this case the measurement is the log change for a given frequency.

\begin{align}
F_t &= \left[\begin{matrix}1 - \kappa\theta dt \\ 0\end{matrix}\right] \\
Q_t &= \left[\begin{matrix}1 - \kappa\theta dt \\ 0\end{matrix}\right] \\
z_t &= d s_t
\end{align}

The observation vector is given by
\begin{align}
x_t &= \left[\begin{matrix}\nu_t && w_t && z_t\end{matrix}\right]^T \\
\bar{x}_t = {\mathbb E}\left[x_t\right] &= \left[\begin{matrix}\nu_t && 0 && 0\end{matrix}\right]^T
\end{align}

```{code-cell} ipython3
from quantflow.data.fmp import FMP
frequency = "1min"
async with FMP() as cli:
df = await cli.prices("ETHUSD", frequency)
df = df.sort_values("date").reset_index(drop=True)
df
```

```{code-cell} ipython3
import plotly.express as px
fig = px.line(df, x="date", y="close", markers=True)
fig.show()
```

```{code-cell} ipython3
import numpy as np
from quantflow.utils.volatility import parkinson_estimator, GarchEstimator
df["returns"] = np.log(df["close"]) - np.log(df["open"])
df["pk"] = parkinson_estimator(df["high"], df["low"])
ds = df.dropna()
dt = cli.historical_frequencies_annulaized()[frequency]
fig = px.line(ds["returns"], markers=True)
fig.show()
```

```{code-cell} ipython3
import plotly.express as px
from quantflow.utils.bins import pdf
df = pdf(ds["returns"], num=20)
fig = px.bar(df, x="x", y="f")
fig.show()
```

```{code-cell} ipython3
g1 = GarchEstimator.returns(ds["returns"], dt)
g2 = GarchEstimator.pk(ds["returns"], ds["pk"], dt)
```

```{code-cell} ipython3
import pandas as pd
yf = pd.DataFrame(dict(returns=g2.y2, pk=g2.p))
fig = px.line(yf, markers=True)
fig.show()
```

```{code-cell} ipython3
r1 = g1.fit()
r1
```

```{code-cell} ipython3
r2 = g2.fit()
r2
```

```{code-cell} ipython3
sig2 = pd.DataFrame(dict(returns=np.sqrt(g2.filter(r1["params"])), pk=np.sqrt(g2.filter(r2["params"]))))
fig = px.line(sig2, markers=False, title="Stochastic volatility")
fig.show()
```

```{code-cell} ipython3
class HestonCalibration:
def __init__(self, dt: float, initial_std = 0.5):
self.dt = dt
self.kappa = 1
self.theta = initial_std*initial_std
self.sigma = 0.2
self.x0 = np.array((self.theta, 0))
def prediction(self, x):
return np.array((x[0] + self.kappa*(self.theta - x[0])*self.dt, -0.5*x[0]*self.dt))
def state_jacobian(self):
"""THe Jacobian of the state equation"""
return np.array(((1-self.kappa*self.dt, 0),(-0.5*self.dt, 0)))
```

```{code-cell} ipython3
```

```{code-cell} ipython3
c = HestonCalibration(dt)
c.x0
```

```{code-cell} ipython3
c.prediction(c.x0)
```

```{code-cell} ipython3
c.state_jacobian()
```
34 changes: 34 additions & 0 deletions _sources/applications/hurst.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@
---
jupytext:
text_representation:
extension: .md
format_name: myst
format_version: 0.13
jupytext_version: 1.14.7
kernelspec:
display_name: Python 3 (ipykernel)
language: python
name: python3
---

# Hurst Exponent

The [Hurst exponent](https://en.wikipedia.org/wiki/Hurst_exponent) is used as a measure of long-term memory of time series. It relates to the autocorrelations of the time series, and the rate at which these decrease as the lag between pairs of values increases.

It is a statistics which can be used to test if a time-series is mean reverting or it is trending.

```{code-cell} ipython3
from quantflow.sp.cir import CIR
p = CIR(kappa=1, sigma=1)
```

# Links

* [Wikipedia](https://en.wikipedia.org/wiki/Hurst_exponent)
* [Hurst Exponent for Algorithmic Trading
](https://robotwealth.com/demystifying-the-hurst-exponent-part-1/)

```{code-cell} ipython3
```
23 changes: 23 additions & 0 deletions _sources/applications/overview.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,23 @@
---
jupytext:
text_representation:
extension: .md
format_name: myst
format_version: 0.13
jupytext_version: 1.14.7
kernelspec:
display_name: Python 3 (ipykernel)
language: python
name: python3
---

# Applications

Real-world applications of the library

```{tableofcontents}
```

```{code-cell} ipython3
```
Loading

0 comments on commit 5f76383

Please sign in to comment.