-
Notifications
You must be signed in to change notification settings - Fork 44
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add GF2AddK for in place addition of a constant over GF(2^m)
- Loading branch information
1 parent
43d185a
commit 94b9a8a
Showing
6 changed files
with
327 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,168 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"id": "b02daa35", | ||
"metadata": { | ||
"cq.autogen": "title_cell" | ||
}, | ||
"source": [ | ||
"# GF($2^m$) Add Constant" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "c57ce930", | ||
"metadata": { | ||
"cq.autogen": "top_imports" | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"from qualtran import Bloq, CompositeBloq, BloqBuilder, Signature, Register\n", | ||
"from qualtran import QBit, QInt, QUInt, QAny\n", | ||
"from qualtran.drawing import show_bloq, show_call_graph, show_counts_sigma\n", | ||
"from typing import *\n", | ||
"import numpy as np\n", | ||
"import sympy\n", | ||
"import cirq" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "e4620511", | ||
"metadata": { | ||
"cq.autogen": "GF2AddK.bloq_doc.md" | ||
}, | ||
"source": [ | ||
"## `GF2AddK`\n", | ||
"In place addition of a constant $k$ for elements in GF($2^m$).\n", | ||
"\n", | ||
"The bloq implements in place addition of a classical constant $k$ and a quantum register\n", | ||
"$|x\\rangle$ storing elements from GF($2^m$). Addition in GF($2^m$) simply reduces to a component\n", | ||
"wise XOR, which can be implemented via X gates.\n", | ||
"\n", | ||
" $$\n", | ||
" |x\\rangle \\rightarrow |x + k\\rangle\n", | ||
" $$\n", | ||
"\n", | ||
"#### Parameters\n", | ||
" - `bitsize`: The degree $m$ of the galois field GF($2^m$). Also corresponds to the number of qubits in the input register x.\n", | ||
" - `k`: Integer representation of constant over GF($2^m$) that should be added to the input register x. \n", | ||
"\n", | ||
"#### Registers\n", | ||
" - `x`: Input THRU register of size $m$ that stores elements from $GF(2^m)$.\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "04dc8f2b", | ||
"metadata": { | ||
"cq.autogen": "GF2AddK.bloq_doc.py" | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"from qualtran.bloqs.gf_arithmetic import GF2AddK" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "a0d774d4", | ||
"metadata": { | ||
"cq.autogen": "GF2AddK.example_instances.md" | ||
}, | ||
"source": [ | ||
"### Example Instances" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "0588ca5b", | ||
"metadata": { | ||
"cq.autogen": "GF2AddK.gf16_add_k" | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"gf16_add_k = GF2AddK(4, 1)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "8250af55", | ||
"metadata": { | ||
"cq.autogen": "GF2AddK.gf2_add_k_symbolic" | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"import sympy\n", | ||
"\n", | ||
"m, k = sympy.symbols('m, k', positive=True, integers=True)\n", | ||
"gf2_add_k_symbolic = GF2AddK(m, k)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "fe4c4550", | ||
"metadata": { | ||
"cq.autogen": "GF2AddK.graphical_signature.md" | ||
}, | ||
"source": [ | ||
"#### Graphical Signature" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "2374ad42", | ||
"metadata": { | ||
"cq.autogen": "GF2AddK.graphical_signature.py" | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"from qualtran.drawing import show_bloqs\n", | ||
"show_bloqs([gf16_add_k, gf2_add_k_symbolic],\n", | ||
" ['`gf16_add_k`', '`gf2_add_k_symbolic`'])" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "f64d8798", | ||
"metadata": { | ||
"cq.autogen": "GF2AddK.call_graph.md" | ||
}, | ||
"source": [ | ||
"### Call Graph" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "578f0f39", | ||
"metadata": { | ||
"cq.autogen": "GF2AddK.call_graph.py" | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"from qualtran.resource_counting.generalizers import ignore_split_join\n", | ||
"gf16_add_k_g, gf16_add_k_sigma = gf16_add_k.call_graph(max_depth=1, generalizer=ignore_split_join)\n", | ||
"show_call_graph(gf16_add_k_g)\n", | ||
"show_counts_sigma(gf16_add_k_sigma)" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"name": "python" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 5 | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,106 @@ | ||
# Copyright 2024 Google LLC | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# https://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
from functools import cached_property | ||
from typing import Dict, Sequence, TYPE_CHECKING | ||
|
||
import attrs | ||
|
||
from qualtran import Bloq, bloq_example, BloqDocSpec, DecomposeTypeError, QGF, Register, Signature | ||
from qualtran.bloqs.basic_gates import XGate | ||
from qualtran.symbolics import is_symbolic, SymbolicInt | ||
|
||
if TYPE_CHECKING: | ||
from qualtran import BloqBuilder, Soquet | ||
from qualtran.resource_counting import BloqCountDictT, BloqCountT, SympySymbolAllocator | ||
from qualtran.simulation.classical_sim import ClassicalValT | ||
|
||
|
||
@attrs.frozen | ||
class GF2AddK(Bloq): | ||
r"""In place addition of a constant $k$ for elements in GF($2^m$). | ||
The bloq implements in place addition of a classical constant $k$ and a quantum register | ||
$|x\rangle$ storing elements from GF($2^m$). Addition in GF($2^m$) simply reduces to a component | ||
wise XOR, which can be implemented via X gates. | ||
$$ | ||
|x\rangle \rightarrow |x + k\rangle | ||
$$ | ||
Args: | ||
bitsize: The degree $m$ of the galois field GF($2^m$). Also corresponds to the number of | ||
qubits in the input register x. | ||
k: Integer representation of constant over GF($2^m$) that should be added to the input | ||
register x. | ||
Registers: | ||
x: Input THRU register of size $m$ that stores elements from $GF(2^m)$. | ||
""" | ||
|
||
bitsize: SymbolicInt | ||
k: SymbolicInt | ||
|
||
@cached_property | ||
def signature(self) -> 'Signature': | ||
return Signature([Register('x', dtype=self.qgf)]) | ||
|
||
@cached_property | ||
def qgf(self) -> QGF: | ||
return QGF(characteristic=2, degree=self.bitsize) | ||
|
||
@cached_property | ||
def _bits_k(self) -> Sequence[int]: | ||
return self.qgf.to_bits(self.qgf.gf_type(self.k)) | ||
|
||
def is_symbolic(self): | ||
return is_symbolic(self.k, self.bitsize) | ||
|
||
def build_composite_bloq(self, bb: 'BloqBuilder', *, x: 'Soquet') -> Dict[str, 'Soquet']: | ||
if self.is_symbolic(): | ||
raise DecomposeTypeError(f"Cannot decompose symbolic {self}") | ||
xs = bb.split(x) | ||
|
||
for i, bit in enumerate(self._bits_k): | ||
if bit == 1: | ||
xs[i] = bb.add(XGate(), q=xs[i]) | ||
|
||
x = bb.join(xs, dtype=self.qgf) | ||
|
||
return {'x': x} | ||
|
||
def build_call_graph(self, ssa: 'SympySymbolAllocator') -> 'BloqCountDictT': | ||
num_flips = self.bitsize if self.is_symbolic() else sum(self._bits_k) | ||
return {XGate(): num_flips} | ||
|
||
def on_classical_vals(self, *, x) -> Dict[str, 'ClassicalValT']: | ||
assert isinstance(x, self.qgf.gf_type) | ||
return {'x': x + self.qgf.gf_type(self.k)} | ||
|
||
|
||
@bloq_example | ||
def _gf16_add_k() -> GF2AddK: | ||
gf16_add_k = GF2AddK(4, 1) | ||
return gf16_add_k | ||
|
||
|
||
@bloq_example | ||
def _gf2_add_k_symbolic() -> GF2AddK: | ||
import sympy | ||
|
||
m, k = sympy.symbols('m, k', positive=True, integers=True) | ||
gf2_add_k_symbolic = GF2AddK(m, k) | ||
return gf2_add_k_symbolic | ||
|
||
|
||
_GF2_ADD_K_DOC = BloqDocSpec(bloq_cls=GF2AddK, examples=(_gf16_add_k, _gf2_add_k_symbolic)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,44 @@ | ||
# Copyright 2024 Google LLC | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# https://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import pytest | ||
from galois import GF | ||
|
||
from qualtran.bloqs.gf_arithmetic.gf2_add_k import _gf2_add_k_symbolic, _gf16_add_k, GF2AddK | ||
from qualtran.testing import assert_consistent_classical_action | ||
|
||
|
||
def test_gf16_multiplication(bloq_autotester): | ||
bloq_autotester(_gf16_add_k) | ||
|
||
|
||
def test_gf2_multiplication_symbolic(bloq_autotester): | ||
bloq_autotester(_gf2_add_k_symbolic) | ||
|
||
|
||
def test_gf2_multiplication_classical_sim_quick(): | ||
m = 2 | ||
GFM = GF(2**m) | ||
for k in GFM.elements: | ||
bloq = GF2AddK(m, int(k)) | ||
assert_consistent_classical_action(bloq, x=GFM.elements) | ||
|
||
|
||
@pytest.mark.slow | ||
@pytest.mark.parametrize('m', [3, 4, 5]) | ||
def test_gf2_multiplication_classical_sim(m): | ||
GFM = GF(2**m) | ||
for k in GFM.elements: | ||
bloq = GF2AddK(m, int(k)) | ||
assert_consistent_classical_action(bloq, x=GFM.elements) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters