Classifiers added to detect deception through transcripts.
Dataset Used:
- Real life trial data collected during a series of experiments at Michigan (http://web.eecs.umich.edu/~zmohamed/PDFs/Trial.ICMI.pdf) (Folder - dataset)
- Deceptive Opinion Spam Corpus v1.4 (https://myleott.com/op-spam.html)
Run the following command to install all python packages that'll be used in the project:
pip install -r requirements.txt
Folder: OpinionSpam
- Parameters: NGram Approach Classifiers: SVM, NB, Random Forest
To execute:
python3 Ngrams_And_Classifiers.py
- Parameters: LIWC Classifiers: SVM, NB, Random Forest
To execute:
python3 LIWC_And_Classifiers.py
- Parameters: NGrams, LIWC Classifiers: SVM
To execute:
python3 SVM_Ngrams_LIWC.py
- Recurrent Neural Networks
To execute:
python3 RNN
Folder: RealLife
- Classifiers: SVM, NB
To execute:
python3 Classifiers.py
- Parameters: NGram Approach Classifiers: SVM, NB, Random Forest
To execute:
python3 Ngrams_And_Classifiers.py
- Parameters: LIWC Classifiers: SVM, NB, Random Forest
To execute:
python3 LIWC_And_Classifiers.py
- RNN
To execute:
python3 RNN.py