Repository for Going Deeper with Convolutional Neural Network for Stock Market Prediction
Predict the stock market price will go up or not in the near future.
- Using Yahoo! Finance for time series data source
- 50 Taiwan Companies from 0050.TW index.
- Top 10 Indonesia Stock exchange companies.
- Using candlestick chart for input model
- DeepCNN
- ResNet 50
- VGG16
- VGG19
- Randomforest
- KNN
Recommended using virtual environment
python3 -m venv .env
Running on Python3.5
pip install -U -r requirements.txt
- Convert OHLCV stock market data to Candlestickchart
python run_binary_preprocessing.py <ticker> <tradingdays> <windows>
example
python run_binary_preprocessing.py 2880.TW 20 50
- Generate dataset
python generatedata.py <pathdir> <origindir> <destinationdir>
example
python generatedata.py dataset 20_50/2880.TW dataset_2880TW_20_50
- Remove alpha channel
cd /dataset/dataset_2880TW_20_50
find . -name "*.png" -exec convert "{}" -alpha off "{}" \;
- DeepCNN
python myDeepCNN.py -i <datasetdir> -e <numberofepoch> -d <dimensionsize> -b <batchsize> -o <outputresultreport>
example
python myDeepCNN.py -i dataset/dataset_2880TW_20_50 -e 50 -d 50 -b 8 -o outputresult.txt
- Accuracy
- Specitivity
- Sensitivity
- MCC
- F1
@misc{1903.12258,
Author = {Rosdyana Mangir Irawan Kusuma and Trang-Thi Ho and Wei-Chun Kao and Yu-Yen Ou and Kai-Lung Hua},
Title = {Using Deep Learning Neural Networks and Candlestick Chart Representation to Predict Stock Market},
Year = {2019},
Eprint = {arXiv:1903.12258},
}