pulp
is a safe abstraction over SIMD instructions, that allows you to write a function once
and dispatch to equivalent vectorized versions based on the features detected at runtime.
use pulp::Arch;
fn main(){
let mut v = (0..1000).map(|i| i as f64).collect::<Vec<_>>();
let arch = Arch::new();
arch.dispatch(|| {
for x in &mut v {
*x *= 2.0;
}
});
for (i, x) in v.into_iter().enumerate() {
assert_eq!(x, 2.0 * i as f64);
}
}
use pulp::{Arch, Simd, WithSimd};
struct TimesThree<'a>(&'a mut [f64]);
impl<'a> WithSimd for TimesThree<'a> {
// No output, the input is modified in place to save time allocating a new vector
type Output = ();
#[inline(always)]
fn with_simd<S: Simd>(self, simd: S) -> Self::Output {
let v = self.0;
// the tail is the remainder left after allocating v into simd vectors
// len(tail) = len(v) % simd_vector_length
let (head, tail) = S::as_mut_simd_f64s(v);
// fill the simd vectors with 3.0
let three = simd.splat_f64s(3.0);
for x in head {
*x = simd.mul_f64s(three, *x);
}
// the tail is not loaded into simd vectors hence non-simd operations are used
for x in tail {
*x = *x * 3.0;
}
}
}
fn main() {
let mut v = (0..1000).map(|i| i as f64).collect::<Vec<_>>();
let arch = Arch::new();
arch.dispatch(TimesThree(&mut v)); // dynamically dispatch the function to the correct simd implementation
for (i, x) in v.into_iter().enumerate() {
assert_eq!(x, 3.0 * i as f64);
}
}
Only available with the macro
feature.
Requires the first non-lifetime generic parameter, as well as the function's first input parameter to be the SIMD type.
use pulp::Simd;
// the macro creates a `sum` function
#[pulp::with_simd(sum = pulp::Arch::new())]
#[inline(always)]
fn sum_with_simd<'a, S: Simd>(simd: S, v: &'a mut [f64]) {
let (head, tail) = S::as_mut_simd_f64s(v);
// fill the simd vectors with 3.0
let three = simd.splat_f64s(3.0);
for x in head {
*x = simd.mul_f64s(three, *x);
}
for x in tail {
*x = *x * 3.0;
}
}
fn main() {
let mut v = (0..1000).map(|i| i as f64).collect::<Vec<_>>();
sum(&mut v);
for (i, x) in v.into_iter().enumerate() {
assert_eq!(x, 3.0 * i as f64);
}
}