Skip to content

Improvements of the ZapLine function to remove line noise from EEG/MEG data. Adds automatic detection of the number of components to remove, and chunks the data into segments to account for nonstationarities.

License

Notifications You must be signed in to change notification settings

sccn/zapline-plus

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

52 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Zapline-plus

Improvements of the ZapLine function to remove line noise from EEG/MEG data. Adds automatic detection of the number of components to remove, and chunks the data into segments to account for nonstationarities.

Dependencies of Noisetools are provided with permission by Alain de Cheveigné. Please visit the original repository for more info and additional noise removal tools: http://audition.ens.fr/adc/NoiseTools/

Quick start

cleanedData = clean_data_with_zapline_plus(data,srate);

Or if you live in the EEGlab universe:

EEG = clean_data_with_zapline_plus_eeglab_wrapper(EEG,struct('noisefreqs',[50])) % specifying the config is optional

Please cite

Original Zapline paper: Cheveigné, Alain de. 2020. “ZapLine: A Simple and Effective Method to Remove Power Line Artifacts.” NeuroImage 207 (February): 116356. https://www.sciencedirect.com/science/article/pii/S1053811919309474.

Zapline-plus paper: Klug, M., and N. A. Kloosterman. 2021. “Zapline-plus: A Zapline Extension for Automatic and Adaptive Removal of Frequency-Specific Noise Artifacts in M/EEG.” bioRxiv. https://www.biorxiv.org/content/10.1101/2021.10.18.464805.abstract.

Versions

  • v1.0, initial version

About

Improvements of the ZapLine function to remove line noise from EEG/MEG data. Adds automatic detection of the number of components to remove, and chunks the data into segments to account for nonstationarities.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • MATLAB 100.0%