Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[de] cs-229-linear-algebra #136

Open
wants to merge 7 commits into
base: master
Choose a base branch
from
Open

[de] cs-229-linear-algebra #136

wants to merge 7 commits into from

Conversation

bb08
Copy link

@bb08 bb08 commented Apr 12, 2019

Hey! German natives welcome, happy to have some discussion and corrections about the translation
Cheers

@shervinea shervinea added the reviewer wanted Looking for a reviewer label Apr 12, 2019
@shervinea
Copy link
Owner

Hi @bb08, thank you again for all your work! Would you know someone who could take a look at your translation? After the review phase, we can merge your translation to the repository.

@shervinea shervinea changed the title [de] Linear algebra [de] cs-229-linear-algebra Oct 6, 2020
Copy link

@dee1337 dee1337 left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

some tweaks (precision and minor spelling corrections) on a - in general - high quality translation

de/refresher-linear-algebra.md Outdated Show resolved Hide resolved
de/refresher-linear-algebra.md Outdated Show resolved Hide resolved

<br>

**15. inner product: for x,y∈Rn, we have:**

&#10230;
&#10230; Innere Produkt: Auch Skalarprodukt, Es gilt x,y∈Rn:**
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

⟶ inneres Produkt: auch Skalarprodukt, Es gilt x,y∈Rn:**

de/refresher-linear-algebra.md Show resolved Hide resolved

<br>

**26. Trace ― The trace of a square matrix A, noted tr(A), is the sum of its diagonal entries:**

&#10230;
&#10230; Spur - Die Spurabbildung einer quadratischen Matrix A, geschrieben als tr(A), ist die summe der Diagonaleinheiten:
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

⟶ Spur - Die Spurabbildung (Spurfunktion) einer quadratischen Matrix A, geschrieben als tr(A), ist die Summe der Diagonaleinheiten:

de/refresher-linear-algebra.md Show resolved Hide resolved

<br>

**29. Remark: A is invertible if and only if |A|≠0. Also, |AB|=|A||B| and |AT|=|A|.**

&#10230;
&#10230; Wichtig: A ist nur invertierbar falls |A|≠0. Weiteres gilt |AB|=|A||B| and |AT|=|A|
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

⟶ Wichtig: A ist nur invertierbar, falls |A|≠0. Des Weiteren gilt |AB|=|A||B| and |AT|=|A|


<br>

**43. Remark: similarly, a matrix A is said to be positive definite, and is noted A≻0, if it is a PSD matrix which satisfies for all non-zero vector x, xTAx>0.**

&#10230;
&#10230; Wichtig: Ebenfalls gilt, Eine Matrix A ist positiv definit, A≻0, falls diese eine PSD Matrix ist und es gilt für alle Einheiten eines Vektors x ungleich 0: x, xTAx>0.
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

⟶ Wichtig: Ebenfalls gilt, dass eine Matrix A positiv definit ist, in der Notatition: A≻0, falls diese eine PSD Matrix ist und es gilt für alle Einheiten eines Vektors x ungleich 0: x, xTAx>0.


<br>

**44. Eigenvalue, eigenvector ― Given a matrix A∈Rn×n, λ is said to be an eigenvalue of A if there exists a vector z∈Rn∖{0}, called eigenvector, such that we have:**

&#10230;
&#10230; Eigenwert, Eigenvektor - Sei A∈Rn×n eine Matrix und λ der Eigentwert von A, falls es einen Vektor z∈Rn∖{0} gibt, Eigentvektor genannt, gilt folgendes:
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

⟶ Eigenwert, Eigenvektor - Sei A∈Rn×n eine Matrix und λ der Eigenwert von A, falls es einen Vektor z∈Rn∖{0}, Eigenvektor genannt, gibt. Dann gilt:


<br>

**45. Spectral theorem ― Let A∈Rn×n. If A is symmetric, then A is diagonalizable by a real orthogonal matrix U∈Rn×n. By noting Λ=diag(λ1,...,λn), we have:**

&#10230;
&#10230; Spektralsatz - Sei A∈Rn×n, falls A eine symmetrische Matrix, dann ist diese diagonalisierbar durch eine orthogonale Matrix U∈Rn×n. Durch Λ=diag(λ1,...,λn) gilt folgendes:
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

⟶ Spektralsatz - Sei A∈Rn×n, falls A eine symmetrische Matrix, dann ist diese diagonalisierbar durch eine orthogonale Matrix U∈Rn×n. Mit der Notation Λ=diag(λ1,...,λn) gilt folgendes:

@shervinea
Copy link
Owner

Hi @bb08, please let us know if @dee1337's changes look good to you, in which case we could move forward with merging this translation. Thank you both for your hard work!

@bb08
Copy link
Author

bb08 commented Apr 5, 2021

Hey! Done, I added @dee1337 suggestions

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
reviewer wanted Looking for a reviewer
Projects
None yet
Development

Successfully merging this pull request may close these issues.

3 participants