PyTorch Implementation for Conference Paper "Initiative Defense against Facial Manipulation (AAAI 2021)"
This repository provides the official PyTorch implementation of the following paper:
Initiative Defense against Facial Manipulation (AAAI 2021)
https://ojs.aaai.org/index.php/AAAI/article/view/16254/16061
Download pretrained models from pretrained_model and put them into ./checkpoints
.
Download clean faces for test from clean_faces and unzip them into ./clean_faces
.
Also, you can download the whole CeleBA dataset for test by
bash download.sh celeba
For test, you can directly run the following commands:
# Test with the noise generator defense
python main.py --mode test --dataset CelebA --image_size 128 \
--c_dim 5 --g_repeat_num 9 --batch_size 1 \
--selected_attrs Black_Hair Gray_Hair Pale_Skin No_Beard Eyeglasses \
--celeba_image_dir ./clean_faces --eps 0.03
# Test without the noise generator defense
python main.py --mode test --dataset CelebA --image_size 128 \
--c_dim 5 --g_repeat_num 9 --batch_size 1 \
--selected_attrs Black_Hair Gray_Hair Pale_Skin No_Beard Eyeglasses \
--celeba_image_dir ./clean_faces --eps 0.03 --use_PG False
If you find this work useful for your research, please cite our paper:
@inproceedings{huang2021initiative,
author={Qidong Huang and Jie Zhang and Wenbo Zhou and Weiming Zhang and Nenghai Yu},
title={Initiative Defense against Facial Manipulation},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence (AAAI)},
year={2021}
}
The code is released under MIT License (see LICENSE file for details).
This work is heavily based on StarGAN.