Skip to content
This repository has been archived by the owner on Oct 18, 2024. It is now read-only.

ska-sci-ops/aa_uv

Repository files navigation

ska-ost-low-uv

Utilities for handling UV data products for low-frequency aperture array telescopes.

ska-ost-low-uv provides a UVX data format and Python class for storing and handling interferometric data.

These codes use the UVData class from pyuvdata to convert the raw HDF5 correlator output files to science-ready data formats like UVFITS, MIRIAD, and CASA MeasurementSets.

Additionally, data can be loaded into the Visibility data model from ska-sdp-datamodels, which is based on xarray.

aavsuv-overview

Some simple calibration and imaging utilities are provided in the postx submodule. This is an optional extra, that requires the matvis package for simulations.

Installation

Download this repository, then install via pip install .. To install optional extras:

pip install .[postx]  # Post-correlation imaging and QA tools
pip install .[sdp]    # Support for SDP Visibility
pip install .[casa]   # Installs python-casacore for MS support

Or run pip install .[all] to install all optional extras.

Fresh conda install

To install from scratch using conda, download this repository, cd into the directory, and run

conda env create -f environment.yml
conda activate ska_ost_low_uv

You can then use conda activate ska_ost_low_uv to start up the environment, and conda deactivate to leave it.

Then run pip install . and any extras (e.g. pip install .[postx]).

File conversion: command-line script

Once installed, a command-line utility, aa_uv, will be available:

> aa_uv -h

usage: aa_uv [-h] -o OUTPUT_FORMAT [-c ARRAY_CONFIG] [-n TELESCOPE_NAME] [-s] [-j] [-b] [-B] [-x FILE_EXT] [-i CONTEXT_YAML] [-w NUM_WORKERS] [-v] [-p PARALLEL_BACKEND] [-N N_INT_PER_FILE] [-z] infile outfile

AAVS UV file conversion utility

positional arguments:
  infile                Input filename
  outfile               Output filename

options:
  -h, --help            show this help message and exit
  -o OUTPUT_FORMAT, --output_format OUTPUT_FORMAT
                        Output file format (uvx, uvfits, miriad, ms, uvh5, sdp). Can be comma separated for multiple formats.
  -c ARRAY_CONFIG, --array_config ARRAY_CONFIG
                        Array configuration YAML file. If supplied, will override ska_ost_low_uv internal array configs.
  -n TELESCOPE_NAME, --telescope_name TELESCOPE_NAME
                        Telescope name, e.g. 'aavs3'. If supplied, will attempt to use ska_ost_low_uv internal array config.
  -s, --phase-to-sun    Re-phase to point toward Sun (the sun must be visible!). If flag not set, data will be phased toward zenith.
  -b, --batch           Batch mode. Input and output are treated as directories, and all subfiles are converted.
  -B, --megabatch       MEGA batch mode. Runs on subdirectories too, e.g. eb-aavs3/2023_12_12/*.hdf5.
  -x FILE_EXT, --file_ext FILE_EXT
                        File extension to search for in batch mode
  -i CONTEXT_YAML, --context_yaml CONTEXT_YAML
                        Path to observation context YAML (for SDP / UVX formats)
  -w NUM_WORKERS, --num-workers NUM_WORKERS
                        Number of parallel processors (i.e. number of files to read in parallel).
  -v, --verbose         Run with verbose output.
  -p PARALLEL_BACKEND, --parallel_backend PARALLEL_BACKEND
                        Joblib backend to use: 'loky' (default) or 'dask'
  -N N_INT_PER_FILE, --n_int_per_file N_INT_PER_FILE
                        Set number of integrations to write per file. Only valid for MS, Miriad, UVFITS, uvh5 output.
  -z, --zipit           Zip up a MS or Miriad file after conversion (flag ignored for other files)

The converter needs a yaml configuration file, which can be supplied with the -c argument, or internal defaults can be used instead via the -n argument (for '-n aavs2' and '-n aavs3'):

# Convert AAVS3 HDF5 data into a MeasurementSet
> aa_uv -n aavs3 -o ms correlator_data.hdf5 my_new_measurement_set.ms

File conversion: Python API

from ska_ost_low_uv.io import hdf5_to_pyuvdata, hdf5_to_sdp_vis

def hdf5_to_pyuvdata(filename: str, yaml_config: str) -> pyuvdata.UVData:
    """ Convert AAVS2/3 HDF5 correlator output to UVData object

    Args:
        filename (str): Name of file to open
        yaml_config (str): YAML configuration file with basic telescope info.
                           See README for more information
    Returns:
        uv (pyuvdata.UVData): A UVData object that can be used to create
                              UVFITS/MIRIAD/UVH5/etc files
    """

def hdf5_to_sdp_vis(fn_raw: str, yaml_raw: str) -> Visibility:
    """ Generate a SDP Visibility object from a AAVS2 HDF5 file

    Args:
        fn_raw (str): Filename of raw HDF5 data to load.
        yaml_raw (str): YAML config data with telescope information
                        See https://github.com/ska-low/aa_uv/tree/main/config#uv_configyaml

    Notes:
        The HDF5 files generated by AAVS2/3 are NOT the same format as that found in
        ska-sdp-datamodels HDF5 visibilty specification.
        The AAVS DAQ receiver code in aavs-system has some info on the HDF5 format, here:
        https://gitlab.com/ska-telescope/aavs-system/-/blob/master/python/pydaq/persisters/corr.py
    """

Installation

Mamba / conda

To help install into a fresh conda environment, a environment.yml is provided. To create a new environment, download this repo then run:

conda env create -f environment.yml

This will create an environment called aavs, which you enter by typing conda activate aavs. You can then activate this and install via:

conda activate aavs
pip install .

Pip will then install ska_ost_low_uv and the few final packages that are not available in the conda-forge package manager (e.g. pygdsm, pyuvdata, ska-sdp-datamodels).

Pip / manual

If you have an existing Python 3 installation, you can install with pip via:

pip install git+https://github.com/ska-sci-ops/aa_uv/edit/main/README.md

Alternatively, download this repository and install using pip install .. A list of required packages can be found in the pyproject.toml.

Astronomy packages

astropy

ska_ost_low_uv is built upon the following astronomy packages:

  • astropy for coordinate calculations.
  • pyuvdata for interferometric data format conversion.
  • matvis for visibility simulation.
  • pygdsm for diffuse sky model generation.# ska-ost-low-uv

SKA Ost Low UV provides utilities for handling UV data products for SKA Low.

Documentation

Documentation Status

The documentation for this project, including how to get started with it, can be found in the docs folder, or browsed in the SKA development portal: