Run Jupyter Lab with Tensorflow on a Raspberry Pi as a service or within a docker container.
Install R and IRkernel (experimental!)
sudo apt-get update && sudo apt-get upgrade
apt-get install -y --no-install-recommends \
build-essential \
libc-ares-dev \
libeigen3-dev \
libffi-dev \
libfreetype6-dev \
libopenmpi-dev \
libpng-dev \
openmpi-bin \
openssl \
wget \
&& \
apt-get clean
apt-get install -y --no-install-recommends \
python3 \
python3-dev \
python3-pip \
python3-setuptools \
python3-wheel
pip3 install --upgrade pip
sudo rm /usr/bin/python
sudo ln -s /usr/bin/python3 /usr/bin/python
pip3 install \
Cython==0.29.24 \
matplotlib==3.0.2 \
numpy==1.19.5 \
pandas==1.0 \
scikit-learn=0.20.2
Since there are Python wheels available for ARM architecture at https://github.com/lhelontra/tensorflow-on-arm/releases or https://github.com/bitsy-ai/tensorflow-arm-bin we don't need to build it.
apt-get install -y --no-install-recommends \
build-essential \
gfortran \
libatlas-base-dev \
libhdf5-103 \
libhdf5-dev \
libhdf5-serial-dev
pip3 install \
h5py==2.10.0 \
keras_applications==1.0.8 \
keras_preprocessing==1.1.2
wget https://github.com/lhelontra/tensorflow-on-arm/releases/download/v2.4.0/tensorflow-2.4.0-cp37-none-linux_armv7l.whl
pip3 uninstall tensorflow
pip3 install tensorflow-2.4.0-cp37-none-linux_armv7l.whl
sudo apt-get install -y --no-install-recommends \
npm \
nodejs
sudo npm install -g configurable-http-proxy
pip3 install \
notebook==6.4.5 \
jupyterlab==3.2.1
jupyter notebook --generate-config
jupyter notebook password
c.NotebookApp.ip = '*'
c.NotebookApp.open_browser = False
c.NotebookApp.port = 8888
c.NotebookApp.allow_remote_access = True
c.NotebookApp.token = ''
c.NotebookApp.password_required = True
c.NotebookApp.notebook_dir = '<your_notebook_folder>'
c.NotebookApp.default_url = '/lab'
{
"NotebookApp": {
"nbserver_extensions": {
"jupyterlab": true,
"jupyter_extensions_configurator": true
}
}
}
sudo apt remove r-base
sudo apt-get install -y --no-install-recommends \
libbz2-dev \
libcurl4-openssl-dev \
liblzma-dev \
libreadline-dev \
libgit2-dev \
libxml2-dev \
libpcre3 \
libpcre3-dev
wget https://ftp.fau.de/cran/src/base/R-4/R-4.1.1.tar.gz
tar -xvf R-4.1.1.tar.gz
rm R-4.1.1.tar.gz
cd R-4.1.1
./configure --with-x=no --disable-java --with-pcre1 --prefix=<r_home_directory>
make && make install
cd ..
rm R-4.1.1
ln -s <r_home_directory>/bin/R /usr/local/bin/R
ln -s <r_home_directory>/bin/Rscript /usr/local/bin/Rscript
install.packages('IRkernel', repos='http://cran.rstudio.com/')
IRkernel::installspec()
Create the service file /lib/systemd/system/jupyterlab.service
.
[Unit]
Description=JupyterLab Service
After=multi-user.target
[Service]
User=<user_name>
ExecStart=/usr/local/bin/jupyter notebook
Restart=on-failure
[Install]
WantedBy=multi-user.target
Start the service.
sudo systemctl daemon-reload
sudo systemctl start jupyterlab
sudo systemctl enable jupyterlab
sudo systemctl status jupyterlab.service
If the status command shows "active (running)" the Jupyter Lab should be reachable by http://<server_ip_address>:8888/lab
.
The docker container is based on Debian Buster for arm32v7 and installs
- TensorFlow from tensorflow-on-arm or tensorflow-arm-bin
- NumPy, SciPy, Scikit-learn, Matplotlib and Pandas
- Tini which operates as a process subreaper for jupyter to prevent kernel crashes
- Jupyter Notebook with Jupyter Lab as a simple notebook server with password protection
- JUPYTER_PASSWORD = jupyter
- TINI_VERSION = 0.19.0 (used for build only)
- TENSORFLOW_VERSION = 2.4.0 (used for build only)
curl -sSL https://get.docker.com | sh
sudo usermod -aG docker <user_name>
sudo pip3 install docker-compose
sudo systemctl enable docker
docker-compose build
docker-compose up -d
https://towardsdatascience.com/setup-your-home-jupyterhub-on-a-raspberry-pi-7ad32e20eed
https://github.com/kleinee/jns (MIT License)
https://github.com/kidig/rpi-jupyter-lab
https://github.com/ml-tooling/ml-workspace (Apache-2.0 License)