Skip to content
This repository has been archived by the owner on Apr 30, 2020. It is now read-only.

Commit

Permalink
copy page_ranker to infra
Browse files Browse the repository at this point in the history
  • Loading branch information
mzargham committed Apr 18, 2019
1 parent 3ae8df5 commit 279e5d9
Showing 1 changed file with 208 additions and 0 deletions.
208 changes: 208 additions & 0 deletions infra/page_ranker.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,208 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu Mar 14 20:43:21 2019
@author: Zargham
"""

import networkx as nx
import pandas as pd
import numpy as np

#defaults
default_self_loop_wt= .001

def update_score(g,alpha,seed, lazy=False, lazy_wt = .5):

#lazy random walk assumes a topology independent 1/2 wt on self-loops
lazy_wt = lazy_wt*float(lazy)

prior_x = nx.get_node_attributes(g,'score')
for n in g.nodes:
self_wt = g.nodes[n]['self_wt']/g.nodes[n]['total_wt']

val = (1-alpha)*self_wt*prior_x[n] + alpha*seed[n]
for nb in g.nodes[n]['out_nbr']:
#outbound neighbor
e_count = edge_count(g, n,nb)
for e3 in range(e_count):
wt = g.edges[(n,nb,e3)]['out_weight']/g.nodes[nb]['total_wt']
val = val + (1-alpha)*wt*prior_x[nb]

for nb in g.nodes[n]['in_nbr']:
#inbound neighbor
e_count = edge_count(g, nb,n)
for e3 in range(e_count):
wt = g.edges[(nb,n,e3)]['in_weight']/g.nodes[nb]['total_wt']
val = val + (1-alpha)*wt*prior_x[nb]

#print(val)

g.nodes[n]['score']= lazy_wt*prior_x[n]+(1-lazy_wt)*val

return g

#helper function
def edge_count(g,src,dst):
i =0
stop = False
while not(stop):
try:
g.edges[(src,dst,i)]
i=i+1
except:
stop = True
return i

#tuples are (to_weight, from_weight)
default_edge_wt_by_type = {
'github/authors': (0.5,1),
'github/hasParent':(1,1/4),
'git/hasParent':(1,1/4),
'github/mentionsAuthor': (1,1/32),
'github/mergedAs':(.5,1),
'github/references':(1,1/16),
'github/reactsHeart':(2,1/32),
'github/reactsHooray':(4,1/32),
'github/reactsRocket':(1,0), #appears to be missing from current implementation
'github/reactsThumbsUp':(1,1/32)
}

default_node_wt_by_type = {
'github/issue':2.0,
'github/repo':4.0,
'github/comment': 1.0,
'git/commit':2.0,
'github/user':1.0,
'github/bot':1.0,
'github/review': 1.0,
'github/pull': 4.0
}


def wt_heuristic(g,
node_wt_by_type=default_node_wt_by_type,
edge_wt_by_type=default_edge_wt_by_type,
self_loop_wt=default_self_loop_wt):

for e in g.edges:
e_wts = edge_wt_by_type[g.edges[e]['type']]
src_wt = node_wt_by_type[g.nodes[e[0]]['type']]
dst_wt = node_wt_by_type[g.nodes[e[1]]['type']]

g.edges[e]['in_weight'] = e_wts[0]*dst_wt
g.edges[e]['out_weight'] = e_wts[1]*src_wt

'''
for n in g.nodes:
wt = self_loop_wt
for nb in nx.all_neighbors(g,n):
#outbound neighbor
if nb in g.neighbors(n):
e_count = edge_count(g,n,nb)
for e3 in range(e_count):
wt = wt + g.edges[(n,nb,e3)]['out_weight']
#inbound neighbor
else:
e_count = edge_count(g,nb,n)
for e3 in range(e_count):
wt = wt + g.edges[(nb,n,e3)]['in_weight']
g.nodes[n]['denominator']=wt
'''

#create neighborhoods
for n in g.nodes:
g.nodes[n]['all_nbr']= set(nx.all_neighbors(g,n))
g.nodes[n]['in_nbr'] = set()
g.nodes[n]['out_nbr'] = set()
for nb in g.nodes[n]['all_nbr']:
#print((n,nb))
try :
g.edges[(nb,n,0)]
g.nodes[n]['in_nbr'].add(nb)
except:
pass
try :
g.edges[(n,nb,0)]
g.nodes[n]['out_nbr'].add(nb)
except:
pass

for n in g.nodes:
self_wt = self_loop_wt#/g.nodes[n]['denominator']
g.nodes[n]['self_wt']=self_wt
total_wt = self_wt
for nb in g.nodes[n]['out_nbr']:
#outbound neighbor
e_count = edge_count(g, n,nb)
for e3 in range(e_count):
wt = g.edges[(n,nb,e3)]['in_weight']#/g.nodes[nb]['denominator']
#g.edges[(n,nb,e3)]['normalized_out_wt']=wt
total_wt = total_wt+wt

for nb in g.nodes[n]['in_nbr']:
#inbound neighbor
e_count = edge_count(g, nb,n)
for e3 in range(e_count):
wt = g.edges[(nb,n,e3)]['out_weight']#/g.nodes[nb]['denominator']
#g.edges[(nb,n,e3)]['normalized_in_wt']=wt
total_wt = total_wt+wt


g.nodes[n]['total_wt'] = total_wt

return g

def pageRanker(g,
alpha,
K,
seed=None,
initial_value = None,
lazy=False,
lazy_wt = .5,
lazy_decay = True,
self_loop_wt=default_self_loop_wt,
node_wt_by_type =default_node_wt_by_type,
edge_wt_by_type=default_edge_wt_by_type):

#improve input verification for seed
#must be dict keyed to nodes
#with non-negative floating point values summing to 1
if seed==None:
N = len(g.nodes)
seed = {n:1.0/N for n in g.nodes}

#improve input verification for initial value
#must be dict keyed to nodes
#with non-negative floating point values summing to 1
if initial_value==None:
initial_value = seed

for n in g.nodes:
g.nodes[n]['score'] = initial_value[n]

g = wt_heuristic(g,
node_wt_by_type=node_wt_by_type,
edge_wt_by_type=edge_wt_by_type,
self_loop_wt=self_loop_wt)

#print(g.nodes[0])

x_dict = {0:initial_value}
for k in range(0,K):
g = update_score(g,
alpha,
seed,
lazy,
lazy_wt*(1-int(lazy_decay)*k/(k+3)))
x_dict[k+1] = nx.get_node_attributes(g,'score')


#result in numpy array format
pr= np.array(list(x_dict[K].values()))

#trajectory in pandas dataframe format
df = pd.DataFrame(x_dict).T
return pr,df, g

0 comments on commit 279e5d9

Please sign in to comment.