- Convert a stream of token into a parsable JSON object before the stream ends.
- Implement Streaming UI in LLM-based AI application.
- Leverage OpenAI Function Calling for early stream processing.
- Parse JSON streams into distinct entities.
- Engage your users with a real-time experience.
To install dependencies:
npm install --save openai-partial-stream
Turn a stream of token into a parsable JSON object as soon as possible.
import OpenAi from "openai";
import { OpenAiHandler, StreamMode } from "openai-partial-stream";
// Set your OpenAI API key as an environment variable: OPENAI_API_KEY
const openai = new OpenAi({ apiKey: process.env.OPENAI_API_KEY });
const stream = await openai.chat.completions.create({
messages: [{ role: "system", content: "Say hello to the world." }],
model: "gpt-3.5-turbo", // OR "gpt-4"
stream: true, // ENABLE STREAMING
temperature: 1,
functions: [
{
name: "say_hello",
description: "say hello",
parameters: {
type: "object",
properties: {
sentence: {
type: "string",
description: "The sentence generated",
},
},
},
},
],
function_call: { name: "say_hello" },
});
const openAiHandler = new OpenAiHandler(StreamMode.StreamObjectKeyValueTokens);
const entityStream = openAiHandler.process(stream);
for await (const item of entityStream) {
console.log(item);
}
Output:
{ index: 0, status: 'PARTIAL', data: {} }
{ index: 0, status: 'PARTIAL', data: { sentence: '' } }
{ index: 0, status: 'PARTIAL', data: { sentence: 'Hello' } }
{ index: 0, status: 'PARTIAL', data: { sentence: 'Hello,' } }
{ index: 0, status: 'PARTIAL', data: { sentence: 'Hello, world' } }
{ index: 0, status: 'PARTIAL', data: { sentence: 'Hello, world!' } }
{ index: 0, status: 'COMPLETED', data: { sentence: 'Hello, world!' } }
Validate the data against a schema and only return the data when it is valid.
import { z } from "zod";
import OpenAi from "openai";
import { OpenAiHandler, StreamMode, Entity } from "openai-partial-stream";
// Set your OpenAI API key as an environment variable: OPENAI_API_KEY
const openai = new OpenAi({ apiKey: process.env.OPENAI_API_KEY });
const stream = await openai.chat.completions.create({
messages: [{ role: "system", content: "Say hello to the world." }],
model: "gpt-3.5-turbo", // OR "gpt-4"
stream: true, // ENABLE STREAMING
temperature: 1,
functions: [
{
name: "say_hello",
description: "say hello",
parameters: {
type: "object",
properties: {
sentence: {
type: "string",
description: "The sentence generated",
},
},
},
},
],
function_call: { name: "say_hello" },
});
const openAiHandler = new OpenAiHandler(StreamMode.StreamObjectKeyValueTokens);
const entityStream = openAiHandler.process(stream);
// Entity Parsing to validate the data
const HelloSchema = z.object({
sentence: z.string().optional(),
});
const entityHello = new Entity("sentence", HelloSchema);
const helloEntityStream = entityHello.genParse(entityStream);
for await (const item of helloEntityStream) {
console.log(item);
}
Output:
{ index: 0, status: 'PARTIAL', data: {}, entity: 'sentence' }
{ index: 0, status: 'PARTIAL', data: { sentence: '' }, entity: 'sentence' }
{ index: 0, status: 'PARTIAL', data: { sentence: 'Hi' }, entity: 'sentence' }
{ index: 0, status: 'PARTIAL', data: { sentence: 'Hi,' }, entity: 'sentence' }
{ index: 0, status: 'PARTIAL', data: { sentence: 'Hi, world' }, entity: 'sentence' }
{ index: 0, status: 'PARTIAL', data: { sentence: 'Hi, world!' }, entity: 'sentence' }
{ index: 0, status: 'COMPLETED', data: { sentence: 'Hi, world!' }, entity: 'sentence'}
import { z } from "zod";
import OpenAi from "openai";
import { OpenAiHandler, StreamMode, Entity } from "openai-partial-stream";
// Intanciate OpenAI client with your API key
const openai = new OpenAi({
apiKey: process.env.OPENAI_API_KEY,
});
const PostcodeSchema = z.object({
name: z.string().optional(),
postcode: z.string().optional(),
population: z.number().optional(),
});
// Call the API with stream enabled and a function
const stream = await openai.chat.completions.create({
messages: [
{
role: "system",
content: "Give me 3 cities and their postcodes in California.",
},
],
model: "gpt-3.5-turbo", // OR "gpt-4"
stream: true, // ENABLE STREAMING
temperature: 1.1,
functions: [
{
name: "set_postcode",
description: "Set a postcode and a city",
parameters: {
type: "object",
properties: {
// The name of the entity
postcodes: {
type: "array",
items: {
type: "object",
properties: {
name: {
type: "string",
description: "Name of the city",
},
postcode: {
type: "string",
description: "The postcode of the city",
},
population: {
type: "number",
description: "The population of the city",
},
},
},
},
},
},
},
],
function_call: { name: "set_postcode" },
});
// Select the mode of the stream parser
// - StreamObjectKeyValueTokens: (REALTIME) Stream of JSON objects, key value pairs and tokens
// - StreamObjectKeyValue: (PROGRESSIVE) Stream of JSON objects and key value pairs
// - StreamObject: (ONE-BY-ONE) Stream of JSON objects
// - NoStream: (ALL-TOGETHER) All the data is returned at the end of the process
const mode = StreamMode.StreamObject;
// Create an instance of the handler
const openAiHandler = new OpenAiHandler(mode);
// Process the stream
const entityStream = openAiHandler.process(stream);
// Create an entity with the schema to validate the data
const entityPostcode = new Entity("postcodes", PostcodeSchema);
// Parse the stream to an entity, using the schema to validate the data
const postcodeEntityStream = entityPostcode.genParseArray(entityStream);
// Iterate over the stream of entities
for await (const item of postcodeEntityStream) {
if (item) {
// Display the entity
console.log(item);
}
}
Output:
{ index: 0, status: 'COMPLETED', data: { name: 'Los Angeles', postcode: '90001', population: 3971883 }, entity: 'postcodes' }
{ index: 1, status: 'COMPLETED', data: { name: 'San Francisco', postcode: '94102', population: 883305 }, entity: 'postcodes' }
{ index: 2, status: 'COMPLETED', data: { name: 'San Diego', postcode: '92101', population: 1425976 }, entity: 'postcodes'}
Select a mode from the list below that best suits your requirements:
- NoStream
- StreamObject
- StreamObjectKeyValue
- StreamObjectKeyValueTokens
Results are returned only after the entire query completes.
NoStream Details |
---|
✅ Single query retrieves all data |
✅ Reduces network traffic |
An event is generated for each item in the list. Items appear as they become ready.
StreamObject Details |
---|
✅ Each message corresponds to a fully-formed item |
✅ Fewer messages |
✅ All essential fields are received at once |
Objects are received in fragments: both a key and its corresponding value are sent together.
StreamObjectKeyValue Details |
---|
✅ Users can engage with portions of the UI |
✅ Supports more regular UI updates |
Keys are received in full, while values are delivered piecemeal until they're complete. This method offers token-by-token UI updating.
StreamObjectKeyValueToken Details |
---|
✅ Offers a dynamic user experience |
✅ Enables step-by-step content consumption |
✅ Decreases user waiting times |
Stream of JSON object progressively by key value pairs:
Color_Streaming_Mode_3_colors.mov
Stream of JSON objects in realtime: