Skip to content

Commit

Permalink
First release
Browse files Browse the repository at this point in the history
  • Loading branch information
albertfgu committed Dec 4, 2023
1 parent 90bbb62 commit 33dc96c
Show file tree
Hide file tree
Showing 41 changed files with 5,491 additions and 2 deletions.
212 changes: 212 additions & 0 deletions .github/workflows/publish.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,212 @@
# This workflow will:
# - Create a new Github release
# - Build wheels for supported architectures
# - Deploy the wheels to the Github release
# - Release the static code to PyPi
# For more information see: https://help.github.com/en/actions/language-and-framework-guides/using-python-with-github-actions#publishing-to-package-registries

name: Build wheels and deploy

on:
create:
tags:
- v*

jobs:

setup_release:
name: Create Release
runs-on: ubuntu-latest
steps:
- name: Get the tag version
id: extract_branch
run: echo ::set-output name=branch::${GITHUB_REF#refs/tags/}
shell: bash

- name: Create Release
id: create_release
uses: actions/create-release@v1
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
with:
tag_name: ${{ steps.extract_branch.outputs.branch }}
release_name: ${{ steps.extract_branch.outputs.branch }}

build_wheels:
name: Build Wheel
needs: setup_release
runs-on: ${{ matrix.os }}

strategy:
fail-fast: false
matrix:
# Using ubuntu-20.04 instead of 22.04 for more compatibility (glibc). Ideally we'd use the
# manylinux docker image, but I haven't figured out how to install CUDA on manylinux.
os: [ubuntu-20.04]
python-version: ['3.7', '3.8', '3.9', '3.10', '3.11']
torch-version: ['1.12.1', '1.13.1', '2.0.1', '2.1.1', '2.2.0.dev20231127']
cuda-version: ['11.8.0', '12.2.0']
# We need separate wheels that either uses C++11 ABI (-D_GLIBCXX_USE_CXX11_ABI) or not.
# Pytorch wheels currently don't use it, but nvcr images have Pytorch compiled with C++11 ABI.
# Without this we get import error (undefined symbol: _ZN3c105ErrorC2ENS_14SourceLocationESs)
# when building without C++11 ABI and using it on nvcr images.
cxx11_abi: ['FALSE', 'TRUE']
exclude:
# Pytorch <= 1.12 does not support Python 3.11
- torch-version: '1.12.1'
python-version: '3.11'
# Pytorch >= 2.0 only supports Python >= 3.8
- torch-version: '2.0.1'
python-version: '3.7'
- torch-version: '2.1.1'
python-version: '3.7'
- torch-version: '2.2.0.dev20231127'
python-version: '3.7'
# Pytorch <= 2.0 only supports CUDA <= 11.8
- torch-version: '1.12.1'
cuda-version: '12.2.0'
- torch-version: '1.13.1'
cuda-version: '12.2.0'
- torch-version: '2.0.1'
cuda-version: '12.2.0'

steps:
- name: Checkout
uses: actions/checkout@v3

- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: ${{ matrix.python-version }}

- name: Set CUDA and PyTorch versions
run: |
echo "MATRIX_CUDA_VERSION=$(echo ${{ matrix.cuda-version }} | awk -F \. {'print $1 $2'})" >> $GITHUB_ENV
echo "MATRIX_TORCH_VERSION=$(echo ${{ matrix.torch-version }} | awk -F \. {'print $1 "." $2'})" >> $GITHUB_ENV
- name: Free up disk space
if: ${{ runner.os == 'Linux' }}
# https://github.com/easimon/maximize-build-space/blob/master/action.yml
# https://github.com/easimon/maximize-build-space/tree/test-report
run: |
sudo rm -rf /usr/share/dotnet
sudo rm -rf /opt/ghc
sudo rm -rf /opt/hostedtoolcache/CodeQL
- name: Set up swap space
if: runner.os == 'Linux'
uses: pierotofy/[email protected]
with:
swap-size-gb: 10

- name: Install CUDA ${{ matrix.cuda-version }}
if: ${{ matrix.cuda-version != 'cpu' }}
uses: Jimver/[email protected]
id: cuda-toolkit
with:
cuda: ${{ matrix.cuda-version }}
linux-local-args: '["--toolkit"]'
# default method is "local", and we're hitting some error with caching for CUDA 11.8 and 12.1
# method: ${{ (matrix.cuda-version == '11.8.0' || matrix.cuda-version == '12.1.0') && 'network' || 'local' }}
method: 'network'
# We need the cuda libraries (e.g. cuSparse, cuSolver) for compiling PyTorch extensions,
# not just nvcc
# sub-packages: '["nvcc"]'

- name: Install PyTorch ${{ matrix.torch-version }}+cu${{ matrix.cuda-version }}
run: |
pip install --upgrade pip
# If we don't install before installing Pytorch, we get error for torch 2.0.1
# ERROR: Could not find a version that satisfies the requirement setuptools>=40.8.0 (from versions: none)
pip install lit
# We want to figure out the CUDA version to download pytorch
# e.g. we can have system CUDA version being 11.7 but if torch==1.12 then we need to download the wheel from cu116
# This code is ugly, maybe there's a better way to do this.
export TORCH_CUDA_VERSION=$(python -c "import os; minv = {'1.12': 113, '1.13': 116, '2.0': 117, '2.1': 118, '2.2': 118}[os.environ['MATRIX_TORCH_VERSION']]; maxv = {'1.12': 116, '1.13': 117, '2.0': 118, '2.1': 121, '2.2': 121}[os.environ['MATRIX_TORCH_VERSION']]; print(max(min(int(os.environ['MATRIX_CUDA_VERSION']), maxv), minv))")
if [[ ${{ matrix.torch-version }} == *"dev"* ]]; then
pip install --no-cache-dir --pre torch==${{ matrix.torch-version }} --index-url https://download.pytorch.org/whl/nightly/cu${TORCH_CUDA_VERSION}
else
pip install --no-cache-dir torch==${{ matrix.torch-version }} --index-url https://download.pytorch.org/whl/cu${TORCH_CUDA_VERSION}
fi
nvcc --version
python --version
python -c "import torch; print('PyTorch:', torch.__version__)"
python -c "import torch; print('CUDA:', torch.version.cuda)"
python -c "from torch.utils import cpp_extension; print (cpp_extension.CUDA_HOME)"
shell:
bash

- name: Build wheel
run: |
# We want setuptools >= 49.6.0 otherwise we can't compile the extension if system CUDA version is 11.7 and pytorch cuda version is 11.6
# https://github.com/pytorch/pytorch/blob/664058fa83f1d8eede5d66418abff6e20bd76ca8/torch/utils/cpp_extension.py#L810
# However this still fails so I'm using a newer version of setuptools
pip install setuptools==68.0.0
pip install ninja packaging wheel
export PATH=/usr/local/nvidia/bin:/usr/local/nvidia/lib64:$PATH
export LD_LIBRARY_PATH=/usr/local/nvidia/lib64:/usr/local/cuda/lib64:$LD_LIBRARY_PATH
# Limit MAX_JOBS otherwise the github runner goes OOM
MAX_JOBS=2 MAMBA_FORCE_BUILD="TRUE" MAMBA_FORCE_CXX11_ABI=${{ matrix.cxx11_abi}} python setup.py bdist_wheel --dist-dir=dist
tmpname=cu${MATRIX_CUDA_VERSION}torch${MATRIX_TORCH_VERSION}cxx11abi${{ matrix.cxx11_abi }}
wheel_name=$(ls dist/*whl | xargs -n 1 basename | sed "s/-/+$tmpname-/2")
ls dist/*whl |xargs -I {} mv {} dist/${wheel_name}
echo "wheel_name=${wheel_name}" >> $GITHUB_ENV
- name: Log Built Wheels
run: |
ls dist
- name: Get the tag version
id: extract_branch
run: echo ::set-output name=branch::${GITHUB_REF#refs/tags/}

- name: Get Release with tag
id: get_current_release
uses: joutvhu/get-release@v1
with:
tag_name: ${{ steps.extract_branch.outputs.branch }}
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}

- name: Upload Release Asset
id: upload_release_asset
uses: actions/upload-release-asset@v1
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
with:
upload_url: ${{ steps.get_current_release.outputs.upload_url }}
asset_path: ./dist/${{env.wheel_name}}
asset_name: ${{env.wheel_name}}
asset_content_type: application/*

publish_package:
name: Publish package
needs: [build_wheels]

runs-on: ubuntu-latest

steps:
- uses: actions/checkout@v3

- uses: actions/setup-python@v4
with:
python-version: '3.10'

- name: Install dependencies
run: |
pip install ninja packaging setuptools wheel twine
# We don't want to download anything CUDA-related here
pip install torch --index-url https://download.pytorch.org/whl/cpu
- name: Build core package
env:
MAMBA_SKIP_CUDA_BUILD: "TRUE"
run: |
python setup.py sdist --dist-dir=dist
- name: Deploy
env:
TWINE_USERNAME: "__token__"
TWINE_PASSWORD: ${{ secrets.PYPI_API_TOKEN }}
run: |
python -m twine upload dist/*
3 changes: 3 additions & 0 deletions .gitmodules
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
[submodule "3rdparty/lm-evaluation-harness"]
path = 3rdparty/lm-evaluation-harness
url = https://github.com/EleutherAI/lm-evaluation-harness/
1 change: 1 addition & 0 deletions 3rdparty/lm-evaluation-harness
Submodule lm-evaluation-harness added at a35206
2 changes: 2 additions & 0 deletions AUTHORS
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
Tri Dao, [email protected]
Albert Gu, [email protected]
140 changes: 138 additions & 2 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,5 +1,141 @@
# Mamba

This repository contains the code for the paper [Mamba: Linear-Time Sequence Modeling with Selective State Spaces](https://arxiv.org/abs/2312.00752).
![Mamba](assets/selection.png "Selective State Space")
> **Mamba: Linear-Time Sequence Modeling with Selective State Spaces**\
> Albert Gu*, Tri Dao*\
> Paper: https://arxiv.org/abs/2312.00752
The first official code release of the paper will be uploaded around noon EST, Monday Dec. 4.
## Installation

- `pip install causal-conv1d`: an efficient implemention of a simple causal Conv1d layer used inside the Mamba block.
- `pip install mamba-ssm`: the core Mamba package.

If `pip` complains about PyTorch versions, try passing `--no-build-isolation` to `pip`.

Other requirements:
- Linux
- NVIDIA GPU
- PyTorch 1.12+
- CUDA 11.6+

## Usage

We expose several levels of interface with the Mamba model.

### Selective SSM

Mamba is based on a selective SSM layer, which is the focus of the paper (Section 3; Algorithm 2).

Source: [ops/selective_scan_interface.py](mamba_ssm/ops/selective_scan_interface.py).

### Mamba Block

The main module of this repository is the Mamba architecture block wrapping the selective SSM.

Source: [modules/mamba_simple.py](mamba_ssm/modules/mamba_simple.py).

Usage:
```
from mamba_ssm import Mamba
batch, length, dim = 2, 64, 16
x = torch.randn(batch, length, dim).to("cuda")
model = Mamba(
# This module uses roughly 3 * expand * d_model^2 parameters
d_model=dim, # Model dimension d_model
d_state=16, # SSM state expansion factor
d_conv=4, # Local convolution width
expand=2, # Block expansion factor
).to("cuda")
y = model(x)
assert y.shape == x.shape
```

### Mamba Language Model

Finally, we provide an example of a complete language model: a deep sequence model backbone (with repeating Mamba blocks) + language model head.

Source: [models/mixer_seq_simple.py](mamba_ssm/models/mixer_seq_simple.py).

This is an example of how to integrate Mamba into an end-to-end neural network.
This example is used in the generation scripts below.



## Pretrained Models

Pretrained models are uploaded to
[HuggingFace](https://huggingface.co/state-spaces): `mamba-130m`, `mamba-370m`,
`mamba-790m`, `mamba-1.4b`, `mamba-2.8b`.

The models will be autodownloaded by the generation script below.

These models were trained on the [Pile](https://huggingface.co/datasets/EleutherAI/pile), and follow the standard model dimensions described by GPT-3 and followed by many open source models:

| Parameters | Layers | Model dim. |
|------------|--------|------------|
| 130M | 12 | 768 |
| 370M | 24 | 1024 |
| 790M | 24 | 1536 |
| 1.4B | 24 | 2048 |
| 2.8B | 32 | 2560 |

(The layer count of Mamba should be doubled, as two Mamba blocks are needed for each "layer" (MHA block + MLP block) of a Transformer.)

Note: these are base models trained only for 300B tokens, without any form of downstream modification (instruction tuning, etc.).
Performance is expected to be comparable or better than other architectures trained on similar data, but not to match larger or fine-tuned models.


## Evaluations

To run zero-shot evaluations of models (corresponding to Table 3 of the paper),
we use the
[lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/tree/big-refactor)
library.

1. Pull the `lm-evaluation-harness` repo by `git submodule update --init
--recursive`. We use the `big-refactor` branch.
2. Install `lm-evaluation-harness`: `pip install -e 3rdparty/lm-evaluation-harness`
3. Run evaluation with (more documentation at the [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/tree/big-refactor) repo):
```
python evals/lm_harness_eval.py --model mamba --model_args pretrained=state-spaces/mamba-130m --tasks lambada_openai,hellaswag,piqa,arc_easy,arc_challenge,winogrande --device cuda --batch_size 64
python evals/lm_harness_eval.py --model hf --model_args pretrained=EleutherAI/pythia-160m --tasks lambada_openai,hellaswag,piqa,arc_easy,arc_challenge,winogrande --device cuda --batch_size 64
```

Note that the result of each task might differ from reported values by 0.1-0.3 due to noise in the evaluation process.

## Inference

The script [benchmarks/benchmark_generation_mamba_simple.py](benchmarks/benchmark_generation_mamba_simple.py)
1. autoloads a model from the HuggingFace Hub,
2. generates completions of a user-specified prompt,
3. benchmarks the inference speed of this generation.

Other configurable options include the top-p (nucleus sampling) probability, and the softmax temperature.

### Examples

To test generation latency (e.g. batch size = 1) with different sampling strategies:

```
python benchmarks/benchmark_generation_mamba_simple.py --model-name "state-spaces/mamba-2.8b" --prompt "My cat wrote all this CUDA code for a new language model and" --topp 0.9 --temperature 0.5
python benchmarks/benchmark_generation_mamba_simple.py --model-name "EleutherAI/pythia-2.8b" --prompt "My cat wrote all this CUDA code for a new language model and" --topp 0.9 --temperature 0.5
```

To test generation throughput with random prompts (e.g. large batch size):
```
python benchmarks/benchmark_generation_mamba_simple.py --model-name "state-spaces/mamba-2.8b" --batch 128
python benchmarks/benchmark_generation_mamba_simple.py --model-name "EleutherAI/pythia-2.8b" --batch 128
```

## Citation

If you use this codebase, or otherwise found our work valuable, please cite Mamba:
```
@article{mamba,
title={Mamba: Linear-Time Sequence Modeling with Selective State Spaces},
author={Gu, Albert and Dao, Tri},
journal={arXiv preprint arXiv:2312.00752},
year={2023}
}
```
Binary file added assets/selection.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading

0 comments on commit 33dc96c

Please sign in to comment.