-
Notifications
You must be signed in to change notification settings - Fork 1.1k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
154 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,153 @@ | ||
# Copyright (c) 2024, Tri Dao, Albert Gu. | ||
|
||
import torch | ||
|
||
import triton | ||
import triton.language as tl | ||
|
||
|
||
@triton.autotune( | ||
configs=[ | ||
triton.Config({'BLOCK_N': 32}), | ||
triton.Config({'BLOCK_N': 64}), | ||
triton.Config({'BLOCK_N': 128}), | ||
triton.Config({'BLOCK_N': 256}), | ||
triton.Config({'BLOCK_N': 512}), | ||
triton.Config({'BLOCK_N': 1024}), | ||
], | ||
key=['ncols'], | ||
) | ||
@triton.jit | ||
def _swiglu_fwd_kernel( | ||
X, | ||
Y, | ||
OUT, | ||
stride_x_row, # how much to increase the pointer when moving by 1 row | ||
stride_y_row, | ||
stride_out_row, | ||
ncols, | ||
BLOCK_N: tl.constexpr, | ||
): | ||
# Map the program id to the row of X and Y it should compute. | ||
row = tl.program_id(0) | ||
start_col = tl.program_id(1) * BLOCK_N | ||
X += row * stride_x_row | ||
Y += row * stride_y_row | ||
OUT += row * stride_out_row | ||
cols = start_col + tl.arange(0, BLOCK_N) | ||
x = tl.load(X + cols, mask=cols < ncols, other=0.).to(tl.float32) | ||
y = tl.load(Y + cols, mask=cols < ncols, other=0.).to(tl.float32) | ||
out = x * tl.sigmoid(x) * y | ||
tl.store(OUT + cols, out, mask=cols < ncols) | ||
|
||
|
||
def _swiglu_fwd(xy, out=None): | ||
if xy.stride(-1) != 1: | ||
xy = xy.contiguous() | ||
batch_shape = xy.shape[:-1] | ||
xy = xy.reshape(-1, xy.shape[-1]) | ||
x, y = xy.chunk(2, dim=-1) | ||
if out is None: | ||
out = torch.empty_like(x) | ||
else: | ||
out = out.reshape(-1, out.shape[-1]) | ||
assert out.shape == x.shape | ||
assert out.stride(-1) == 1 | ||
M, N = x.shape | ||
grid = lambda META: (M, triton.cdiv(N, META['BLOCK_N'])) | ||
with torch.cuda.device(x.device.index): | ||
_swiglu_fwd_kernel[grid](x, y, out, x.stride(0), y.stride(0), out.stride(0), N) | ||
return out.reshape(*batch_shape, out.shape[-1]) | ||
|
||
|
||
@triton.autotune( | ||
configs=[ | ||
triton.Config({'BLOCK_N': 32}), | ||
triton.Config({'BLOCK_N': 64}), | ||
triton.Config({'BLOCK_N': 128}), | ||
triton.Config({'BLOCK_N': 256}), | ||
triton.Config({'BLOCK_N': 512}), | ||
triton.Config({'BLOCK_N': 1024}), | ||
], | ||
key=['ncols'], | ||
) | ||
@triton.heuristics({"RECOMPUTE_OUTPUT": lambda args: args["OUT"] is not None}) | ||
@triton.jit | ||
def _swiglu_bwd_kernel( | ||
X, | ||
Y, | ||
DOUT, | ||
OUT, | ||
DX, | ||
DY, | ||
stride_x_row, # how much to increase the pointer when moving by 1 row | ||
stride_y_row, | ||
stride_dout_row, | ||
stride_out_row, | ||
stride_dx_row, | ||
stride_dy_row, | ||
ncols, | ||
BLOCK_N: tl.constexpr, | ||
RECOMPUTE_OUTPUT: tl.constexpr, | ||
): | ||
# Map the program id to the row of X and Y it should compute. | ||
row = tl.program_id(0) | ||
start_col = tl.program_id(1) * BLOCK_N | ||
X += row * stride_x_row | ||
Y += row * stride_y_row | ||
DOUT += row * stride_dout_row | ||
if RECOMPUTE_OUTPUT: | ||
OUT += row * stride_out_row | ||
DX += row * stride_dx_row | ||
DY += row * stride_dy_row | ||
cols = start_col + tl.arange(0, BLOCK_N) | ||
x = tl.load(X + cols, mask=cols < ncols, other=0.).to(tl.float32) | ||
y = tl.load(Y + cols, mask=cols < ncols, other=0.).to(tl.float32) | ||
dout = tl.load(DOUT + cols, mask=cols < ncols, other=0.).to(tl.float32) | ||
x_sigmoid = tl.sigmoid(x) | ||
dx = x_sigmoid * (1 + x * (1 - x_sigmoid)) * y * dout | ||
dy = x * x_sigmoid * dout | ||
tl.store(DX + cols, dx, mask=cols < ncols) | ||
tl.store(DY + cols, dy, mask=cols < ncols) | ||
if RECOMPUTE_OUTPUT: | ||
out = x * x_sigmoid * y | ||
tl.store(OUT + cols, out, mask=cols < ncols) | ||
|
||
|
||
def _swiglu_bwd(xy, dout, dxy=None, recompute_output=False, out=None): | ||
if xy.stride(-1) != 1: | ||
xy = xy.contiguous() | ||
if dout.stride(-1) != 1: | ||
dout = dout.contiguous() | ||
batch_shape = xy.shape[:-1] | ||
xy = xy.reshape(-1, xy.shape[-1]) | ||
x, y = xy.chunk(2, dim=-1) | ||
dout = dout.reshape(-1, dout.shape[-1]) | ||
assert dout.shape == x.shape | ||
if dxy is None: | ||
dxy = torch.empty_like(xy) | ||
else: | ||
dxy = dxy.reshape(-1, dxy.shape[-1]) | ||
assert dxy.shape == xy.shape | ||
dx, dy = dxy.chunk(2, dim=-1) | ||
assert dx.stride(-1) == 1 | ||
assert dy.stride(-1) == 1 | ||
if recompute_output: | ||
if out is None: | ||
out = torch.empty_like(x) | ||
else: | ||
out = out.reshape(-1, out.shape[-1]) | ||
assert out.shape == x.shape | ||
assert out.stride(-1) == 1 | ||
M, N = x.shape | ||
grid = lambda META: (M, triton.cdiv(N, META['BLOCK_N'])) | ||
with torch.cuda.device(x.device.index): | ||
_swiglu_bwd_kernel[grid](x, y, dout, out if recompute_output else None, dx, dy, | ||
x.stride(0), y.stride(0), dout.stride(0), | ||
out.stride(0) if recompute_output else 0, | ||
dx.stride(0), dy.stride(0), | ||
N) | ||
if not recompute_output: | ||
return dxy.reshape(*batch_shape, dxy.shape[-1]) | ||
else: | ||
return dxy.reshape(*batch_shape, dxy.shape[-1]), out.reshape(*batch_shape, out.shape[-1]) |