Medication Group | Generic Medication (US Brand Name) |
---|---|
Antiseizure medications | Topiramate (Topamax) |
Beta Blockers | Propranolol (Inderal), Atenolol (Tenormin), Metoprolol (Toprol) |
Tricyclic antidepressants | Amitriptyline (Elavil), Nortriptyline (Pamelor) |
OnabotulinumtoxinA (Botox) | OnabotulinumtoxinA (Botox) |
CGRP monoclonal antibodies | erenumab (Aimovig), galcanezumab (Emgality), fremanezumab (Ajovy), eptinezumab (Vyepti) |
Gepants | Atogepant (Qulipta), rimegepant (Nurtec) |
Medication Group | Generic Medication (US Brand Name) |
---|---|
Triptans | Sumatriptan (Imitrex), Rizatriptan (Maxalt), Eletriptan (Relpax), Naratriptan (Amerge), Frovatriptan (Frova), Zolmitriptan (Zomig), Almotriptan (Axert) |
Gepants | ubrogepant (Ubrelvy), rimegepant (Nurtec), zavegepant (Zavzpret) |
Ditan | Lasmiditan (Reyvow) |
Ergots | Dihydroergotamine (DHE, Migranal, Trudhesa), ergotamine (Cafergot) |
The project has been tested on the following configurations:
- Operating System: Ubuntu 20.04.5 LTS
- NVIDIA-SMI 525.60.13
- Driver Version: 525.60.13
- CUDA Version: 12.0
- Activate Conda in bash
- Install packages using following command:
$ conda env create -f installations/environment.yml
- If you only want to install packages without version:
conda create --name <env-name> --file installations/packages.txt
- Install any remaining packages using pip as follows:
$ pip install -r installations/requirements.txt
- Clone the repositry:
git clone https://github.com/swati-rajwal/migraine.git
- Get access to dataset, not publicly shared at the moment. Alternatively, you can use this pipeline to your own dataset as well. Put the dataset in
data
folder A_Dataset.py
file is written specifically for the dataset we have. If you have access to our dataset, this file should work. Else, you will have to pre-process your data accordingly.- Create dataset splits:
python B_nfold_split.py <csv_file_path> <output_folder_path>
- Run
chmod +x C_1_run_cls_multiGPU.sh
to ensure you have rights to run this file. - Run
C_1_run_cls_multiGPU.sh
that in turn runs theC_2_simpletransformers_cls.py
file for RoBERTa based classification - As an example, you can run a command like
./C_1_run_cls_multiGPU.sh &> results/roberta_run_$(date +%Y-%m-%d).log
- If you re-run step 4, make sure to either delete or rename the folder 'model'
- For evaluation, run
python D_eval_model.py task_configs/migraine.json &> results/eval_run_$(date +%Y-%m-%d).log
command. - To understand the sentiment across various medication groups, run
python E_sentiment_analysis.py