You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
The project aimed to classify Gutenberg texts accurately. Employing advanced NLP methodologies, it covered collection, preprocessing, feature engineering, and model evaluation for literary work classification. as part of the University of Ottawa's 2023 NLP course.
Using NLP and a smart chatbot, this project gauges customer sentiments online, offering customization and real-time feedback. Employing TF-BOW-LDA and ML models, it empowers e-commerce decisions, culminating in an NLP course at uOttawa in 2023.
Finding insights on what could be improved at a restaurant based on reviews. Project contains the implementation, dataset and a written report. Methods utilized include LDA, NER, keyword extraction, length analysis, association rules mining, N-gram analysis and more.
Sentiment analysis on the IMDB dataset using Bag of Words models (Unigram, Bigram, Trigram, Bigram with TF-IDF) and Sequence to Sequence models (one-hot vectors, word embeddings, pretrained embeddings like GloVe, and transformers with positional embeddings).