Skip to content

Commit

Permalink
Improve readability.
Browse files Browse the repository at this point in the history
  • Loading branch information
GeorgeTsoukalas committed Oct 30, 2024
1 parent c092d1a commit 5fb3c70
Show file tree
Hide file tree
Showing 205 changed files with 1,175 additions and 1,044 deletions.
24 changes: 18 additions & 6 deletions coq/src/putnam_1994_b3.v
Original file line number Diff line number Diff line change
@@ -1,6 +1,18 @@
Require Import Reals Coquelicot.Coquelicot.
Open Scope R.
Definition putnam_1994_b3_solution (k: R) := k < 1.
Theorem putnam_1994_b3
: forall k : R, (forall f : R -> R, (forall x : R, f x > 0 /\ ex_derive f x /\ (Derive f) x > f x) -> exists N : R, forall x : R, x > N -> f x > exp (k * x)) <-> putnam_1994_b3_solution k.
Proof. Admitted.
From mathcomp Require Import all_ssreflect ssralg ssrnum.
From mathcomp Require Import reals normedtype derive topology sequences.
From mathcomp Require Import classical_sets.
Import numFieldNormedType.Exports.

Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.

Local Open Scope ring_scope.
Local Open Scope classical_set_scope.

Variable R : realType.
Definition putnam_1993_b3_solution : set R := [set k | k < 1].
Theorem putnam_1993_b3
: [set k | forall f (hf : forall x, differentiable f x /\ 0 < f x < f^`() x),
exists N : R, forall x, N < x -> expR (k * x) < f x] = putnam_1993_b3_solution.
Proof. Admitted.
10 changes: 5 additions & 5 deletions lean4/src/putnam_1963_b3.lean
Original file line number Diff line number Diff line change
Expand Up @@ -8,8 +8,8 @@ abbrev putnam_1963_b3_solution : Set (ℝ → ℝ) := sorry
Find every twice-differentiable real-valued function $f$ with domain the set of all real numbers and satisfying the functional equation $(f(x))^2-(f(y))^2=f(x+y)f(x-y)$ for all real numbers $x$ and $y$.
-/
theorem putnam_1963_b3
(f : ℝ → ℝ)
(fdiff : Prop)
(hfdiff : fdiff ↔ ContDiff ℝ 1 f ∧ Differentiable ℝ (deriv f))
: (fdiff ∧ ∀ x y : ℝ, (f x) ^ 2 - (f y) ^ 2 = f (x + y) * f (x - y)) ↔ f ∈ putnam_1963_b3_solution :=
sorry
(f : ℝ → ℝ) :
f ∈ putnam_1963_b3_solution ↔
(ContDiff ℝ 1 f ∧ Differentiable ℝ (deriv f)
∀ x y : ℝ, (f x) ^ 2 - (f y) ^ 2 = f (x + y) * f (x - y)) :=
sorry
9 changes: 5 additions & 4 deletions lean4/src/putnam_1964_a5.lean
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,8 @@ Prove that there exists a constant $k$ such that for any sequence $a_i$ of posit
\]
-/
theorem putnam_1964_a5
(pa : (ℕ → ℝ) → Prop)
(hpa : pa = fun a ↦ (∀ n : ℕ, a n > 0) ∧ ∃ L : ℝ, Tendsto (fun N ↦ ∑ n in Finset.range N, 1 / a n) atTop (𝓝 L))
: (∃ k : ℝ, ∀ a : ℕ → ℝ, pa a → ∑' n : ℕ, (n + 1) / (∑ i in Finset.range (n + 1), a i) ≤ k * ∑' n : ℕ, 1 / a n) :=
sorry
(pa : (ℕ → ℝ) → Prop)
(hpa : ∀ a, pa a ↔ (∀ n : ℕ, a n > 0) ∧ ∃ L : ℝ, Tendsto (fun N ↦ ∑ n in Finset.range N, 1 / a n) atTop (𝓝 L)) :
∃ k : ℝ, ∀ a : ℕ → ℝ, pa a →
∑' n : ℕ, (n + 1) / (∑ i in Finset.range (n + 1), a i) ≤ k * ∑' n : ℕ, 1 / a n :=
sorry
12 changes: 6 additions & 6 deletions lean4/src/putnam_1964_b6.lean
Original file line number Diff line number Diff line change
Expand Up @@ -6,9 +6,9 @@ open Set Function Filter Topology
Let $D$ be the unit disk in the plane. Show that we cannot find congruent sets $A, B$ with $A \cap B = \emptyset$ and $A \cup B = D$.
-/
theorem putnam_1964_b6
(D : Set (EuclideanSpace ℝ (Fin 2)))
(hD : D = {v : EuclideanSpace ℝ (Fin 2) | dist 0 v ≤ 1})
(cong : Set (EuclideanSpace ℝ (Fin 2)) → Set (EuclideanSpace ℝ (Fin 2)) → Prop)
(hcong : cong = fun A B ∃ f : (EuclideanSpace ℝ (Fin 2)) → (EuclideanSpace ℝ (Fin 2)), B = f '' A ∧ ∀ v w : EuclideanSpace ℝ (Fin 2), dist v w = dist (f v) (f w))
: (¬∃ A B : Set (Fin 2 → ℝ), cong A B ∧ A ∩ B = ∅ ∧ A ∪ B = D) :=
sorry
(D : Set (EuclideanSpace ℝ (Fin 2)))
(hD : D = {v : EuclideanSpace ℝ (Fin 2) | dist 0 v ≤ 1})
(cong : Set (EuclideanSpace ℝ (Fin 2)) → Set (EuclideanSpace ℝ (Fin 2)) → Prop)
(hcong : ∀ A B, cong A B ∃ f : (EuclideanSpace ℝ (Fin 2)) → (EuclideanSpace ℝ (Fin 2)), B = f '' A ∧ ∀ v w : EuclideanSpace ℝ (Fin 2), dist v w = dist (f v) (f w))
: (¬∃ A B : Set (Fin 2 → ℝ), cong A B ∧ A ∩ B = ∅ ∧ A ∪ B = D) :=
sorry
21 changes: 11 additions & 10 deletions lean4/src/putnam_1965_b6.lean
Original file line number Diff line number Diff line change
Expand Up @@ -6,13 +6,14 @@ open EuclideanGeometry Topology Filter Complex SimpleGraph.Walk
Let $A$, $B$, $C$, and $D$ be four distinct points for which every circle through $A$ and $B$ intersects every circle through $C$ and $D$. Prove that $A$, $B$, $C$ and $D$ are either collinear (all lying on the same line) or cocyclic (all lying on the same circle).
-/
theorem putnam_1965_b6
(A B C D : EuclideanSpace ℝ (Fin 2))
(S : Set (EuclideanSpace ℝ (Fin 2)))
(hS : S = {A, B, C, D})
(hdistinct : S.ncard = 4)
(through : (ℝ × (EuclideanSpace ℝ (Fin 2))) → (EuclideanSpace ℝ (Fin 2)) → Prop)
(through_def : through = fun (r, P) => fun Q => dist P Q = r)
(hABCD : ∀ r s : ℝ, ∀ P Q : EuclideanSpace ℝ (Fin 2), through (r, P) A ∧ through (r, P) B ∧ through (s, Q) C ∧ through (s, Q) D →
∃ I : EuclideanSpace ℝ (Fin 2), through (r, P) I ∧ through (s, Q) I)
: Collinear ℝ S ∨ ∃ r : ℝ, ∃ P : EuclideanSpace ℝ (Fin 2), ∀ Q ∈ S, through (r, P) Q :=
sorry
(A B C D : EuclideanSpace ℝ (Fin 2))
(S : Set (EuclideanSpace ℝ (Fin 2)))
(hS : S = {A, B, C, D})
(hdistinct : S.ncard = 4)
(through : (ℝ × (EuclideanSpace ℝ (Fin 2))) → (EuclideanSpace ℝ (Fin 2)) → Prop)
(through_def : through = fun (r, P) => fun Q => dist P Q = r)
(hABCD : ∀ r s : ℝ, ∀ P Q,
through (r, P) A ∧ through (r, P) B ∧ through (s, Q) C ∧ through (s, Q) D →
∃ I, through (r, P) I ∧ through (s, Q) I) :
Collinear ℝ S ∨ ∃ r : ℝ, ∃ P, ∀ Q ∈ S, through (r, P) Q :=
sorry
3 changes: 1 addition & 2 deletions lean4/src/putnam_1967_a1.lean
Original file line number Diff line number Diff line change
Expand Up @@ -6,11 +6,10 @@ open Nat Topology Filter
Let $f(x)=a_1\sin x+a_2\sin 2x+\dots+a_n\sin nx$, where $a_1,a_2,\dots,a_n$ are real numbers and where $n$ is a positive integer. Given that $|f(x)| \leq |\sin x|$ for all real $x$, prove that $|a_1|+|2a_2|+\dots+|na_n| \leq 1$.
-/
theorem putnam_1967_a1
(n : ℕ)
(n : ℕ) (hn : n > 0)
(a : Set.Icc 1 n → ℝ)
(f : ℝ → ℝ)
(hf : f = (fun x : ℝ => ∑ i : Set.Icc 1 n, a i * Real.sin (i * x)))
(npos : n > 0)
(flesin : ∀ x : ℝ, abs (f x) ≤ abs (Real.sin x))
: abs (∑ i : Set.Icc 1 n, i * a i) ≤ 1 :=
sorry
11 changes: 6 additions & 5 deletions lean4/src/putnam_1967_a2.lean
Original file line number Diff line number Diff line change
Expand Up @@ -10,8 +10,9 @@ Define $S_0$ to be $1$. For $n \geq 1$, let $S_n$ be the number of $n \times n$
\end{enumerate}
-/
theorem putnam_1967_a2
(S : ℕ → ℤ)
(hS0 : S 0 = 1)
(hSn : ∀ n ≥ 1, S n = {A : Matrix (Fin n) (Fin n) ℕ | (∀ i j : Fin n, A i j = A j i) ∧ (∀ j : Fin n, (∑ i : Fin n, A i j) = 1)}.ncard)
: (∀ n ≥ 1, S (n + 1) = S n + n * S (n - 1)) ∧ (∀ x : ℝ, (∑' n : ℕ, S n * (x ^ n / (n)!)) = Real.exp (x + x ^ 2 / 2)) :=
sorry
(S : ℕ → ℤ)
(hS0 : S 0 = 1)
(hSn : ∀ n ≥ 1, S n = {A : Matrix (Fin n) (Fin n) ℕ | (∀ i j, A i j = A j i) ∧ (∀ j, (∑ i, A i j) = 1)}.ncard) :
(∀ n ≥ 1, S (n + 1) = S n + n * S (n - 1)) ∧
(∀ x : ℝ, (∑' n : ℕ, S n * (x ^ n / (n)!)) = Real.exp (x + x ^ 2 / 2)) :=
sorry
17 changes: 9 additions & 8 deletions lean4/src/putnam_1967_a3.lean
Original file line number Diff line number Diff line change
@@ -1,16 +1,17 @@
import Mathlib

open Nat Topology Filter
open Polynomial

abbrev putnam_1967_a3_solution : ℕ := sorry
-- 5
/--
Consider polynomial forms $ax^2-bx+c$ with integer coefficients which have two distinct zeros in the open interval $0<x<1$. Exhibit with a proof the least positive integer value of $a$ for which such a polynomial exists.
-/
theorem putnam_1967_a3
(pform pzeros pall : Polynomial ℝ → Prop)
(hpform : ∀ p : Polynomial ℝ, pform p ↔ p.degree = 2 ∧ ∀ i ∈ Finset.range 3, p.coeff i = round (p.coeff i))
(hpzeros : ∀ p, pzeros p ↔ ∃ z1 z2 : Set.Ioo (0 : ℝ) 1, z1 ≠ z2 ∧ p.eval z1.1 = 0 ∧ p.eval z2.1 = 0)
(hpall : ∀ p, pall p ↔ pform p ∧ pzeros p ∧ p.coeff 2 > 0)
: (∃ p : Polynomial ℝ, pall p ∧ p.coeff 2 = putnam_1967_a3_solution) ∧ (∀ p : Polynomial ℝ, pall p → p.coeff 2 ≥ putnam_1967_a3_solution) :=
sorry
theorem putnam_1967_a3 :
IsLeast
{a | ∃ P : Polynomial ℤ,
P.degree = 2
(∃ z1 z2 : Set.Ioo (0 : ℝ) 1, z1 ≠ z2 ∧ aeval (z1 : ℝ) P = 0 ∧ aeval (z2 : ℝ) P = 0) ∧
P.coeff 2 = a ∧ a > 0}
putnam_1967_a3_solution :=
sorry
4 changes: 2 additions & 2 deletions lean4/src/putnam_1970_a4.lean
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,6 @@ Suppose $(x_n)$ is a sequence such that $\lim_{n \to \infty} (x_n - x_{n-2} = 0$
-/
theorem putnam_1970_a4
(x : ℕ → ℝ)
(hxlim : Tendsto (fun n => x n - x (n-2)) atTop (𝓝 0))
: Tendsto (fun n => (x n - x (n-1))/n) atTop (𝓝 0) :=
(hxlim : Tendsto (fun n => x (n+2) - x n) atTop (𝓝 0))
: Tendsto (fun n => (x (n+1) - x (n))/(n+1)) atTop (𝓝 0) :=
sorry
5 changes: 3 additions & 2 deletions lean4/src/putnam_1971_a2.lean
Original file line number Diff line number Diff line change
Expand Up @@ -8,5 +8,6 @@ abbrev putnam_1971_a2_solution : Set (Polynomial ℝ) := sorry
Determine all polynomials $P(x)$ such that $P(x^2 + 1) = (P(x))^2 + 1$ and $P(0) = 0$.
-/
theorem putnam_1971_a2
: ∀ P : Polynomial ℝ, (P.eval 0 = 0 ∧ (∀ x : ℝ, P.eval (x^2 + 1) = (P.eval x)^2 + 1)) ↔ P ∈ putnam_1971_a2_solution :=
sorry
(P : Polynomial ℝ) :
(P.eval 0 = 0 ∧ (∀ x : ℝ, P.eval (x^2 + 1) = (P.eval x)^2 + 1)) ↔ P ∈ putnam_1971_a2_solution :=
sorry
21 changes: 11 additions & 10 deletions lean4/src/putnam_1971_a3.lean
Original file line number Diff line number Diff line change
Expand Up @@ -6,13 +6,14 @@ open Set
The three vertices of a triangle of sides $a,b,c$ are lattice points and lie on a circle of radius $R$. Show that $abc \geq 2R$.
-/
theorem putnam_1971_a3
(a b c : ℝ × ℝ)
(R : ℝ)
(habclattice : a.1 = round a.1 ∧ a.2 = round a.2 ∧ b.1 = round b.1 ∧ b.2 = round b.2 ∧ c.1 = round c.1 ∧ c.2 = round c.2)
(habcneq : a ≠ b ∧ a ≠ c ∧ b ≠ c)
(hR : R > 0)
(oncircle : (ℝ × ℝ) → ℝ → (ℝ × ℝ) → Prop)
(oncircle_def : oncircle = fun (C : ℝ × ℝ) (r : ℝ) (p : ℝ × ℝ) => Real.sqrt ((p.1 - C.1)^2 + (p.2 - C.2)^2) = r)
(hcircle : ∃ C : ℝ × ℝ, oncircle C R a ∧ oncircle C R b ∧ oncircle C R c)
: (Real.sqrt ((a.1 - b.1)^2 + (a.2 - b.2)^2)) * (Real.sqrt ((a.1 - c.1)^2 + (a.2 - c.2)^2)) * (Real.sqrt ((b.1 - c.1)^2 + (b.2 - c.2)^2)) ≥ 2 * R :=
sorry
(a b c : ℝ × ℝ)
(R : ℝ)
(habclattice : a.1 = round a.1 ∧ a.2 = round a.2 ∧ b.1 = round b.1 ∧ b.2 = round b.2 ∧ c.1 = round c.1 ∧ c.2 = round c.2)
(habcneq : a ≠ b ∧ a ≠ c ∧ b ≠ c)
(hR : R > 0)
(hcircle : ∃ C : ℝ × ℝ,
√((a.1 - C.1)^2 + (a.2 - C.2)^2) = R ∧
√((b.1 - C.1)^2 + (b.2 - C.2)^2) = R ∧
√((c.1 - C.1)^2 + (c.2 - C.2)^2) = R) :
(√((a.1 - b.1)^2 + (a.2 - b.2)^2)) * (√((a.1 - c.1)^2 + (a.2 - c.2)^2)) * (√((b.1 - c.1)^2 + (b.2 - c.2)^2)) ≥ 2 * R :=
sorry
14 changes: 8 additions & 6 deletions lean4/src/putnam_1971_a5.lean
Original file line number Diff line number Diff line change
Expand Up @@ -8,9 +8,11 @@ abbrev putnam_1971_a5_solution : ℤ × ℤ := sorry
After each play of a certain game of solitaire, the player receives either $a$ or $b$ points, where $a$ and $b$ are positive integers with $a > b$; scores accumulate from play to play. If there are $35$ unattainable scores, one of which is $58$, find $a$ and $b$.
-/
theorem putnam_1971_a5
(a b : ℤ)
(hab : a > 0 ∧ b > 0 ∧ a > b)
(pab : ℤ → ℤ → Prop)
(hpab : pab = fun x y : ℤ ↦ {s : ℕ | ¬∃ m n : ℕ, m*x + n*y = s}.ncard = 35 ∧ ¬∃ m n : ℕ, m*x + n*y = 58)
: pab a b ↔ a = putnam_1971_a5_solution.1 ∧ b = putnam_1971_a5_solution.2 :=
sorry
(a b : ℤ)
(hab : a > 0 ∧ b > 0 ∧ a > b)
(pab : ℤ → ℤ → Prop)
(hpab : ∀ x y, pab x y ↔
{s : ℕ | ¬∃ m n : ℕ, m*x + n*y = s}.ncard = 35
¬∃ m n : ℕ, m*x + n*y = 58) :
pab a b ↔ a = putnam_1971_a5_solution.1 ∧ b = putnam_1971_a5_solution.2 :=
sorry
11 changes: 5 additions & 6 deletions lean4/src/putnam_1972_a1.lean
Original file line number Diff line number Diff line change
Expand Up @@ -6,9 +6,8 @@ open EuclideanGeometry Filter Topology Set
Show that there are no four consecutive binomial coefficients ${n \choose r}, {n \choose (r+1)}, {n \choose (r+2)}, {n \choose (r+3)}$ where $n,r$ are positive integers and $r+3 \leq n$, which are in arithmetic progression.
-/
theorem putnam_1972_a1
(n : ℕ)
(hn : n > 0)
(fourAP : ℤ → ℤ → ℤ → ℤ → Prop)
(hfourAP : fourAP = fun n1 n2 n3 n4 => n4-n3 = n3-n2 ∧ n3-n2 = n2-n1)
: ¬ ∃ r : ℕ, r > 0 ∧ r + 3 ≤ n ∧ fourAP (n.choose r) (n.choose (r+1)) (n.choose (r+2)) (n.choose (r+3)) :=
sorry
(n : ℕ) (hn : n > 0)
(fourAP : ℤ → ℤ → ℤ → ℤ → Prop)
(hfourAP : ∀ n1 n2 n3 n4, fourAP n1 n2 n3 n4 ↔ n4-n3 = n3-n2 ∧ n3-n2 = n2-n1) :
¬ ∃ r : ℕ, r > 0 ∧ r + 3 ≤ n ∧ fourAP (n.choose r) (n.choose (r+1)) (n.choose (r+2)) (n.choose (r+3)) :=
sorry
12 changes: 6 additions & 6 deletions lean4/src/putnam_1972_a3.lean
Original file line number Diff line number Diff line change
Expand Up @@ -9,9 +9,9 @@ abbrev putnam_1972_a3_solution : Set (ℝ → ℝ) := sorry
We call a function $f$ from $[0,1]$ to the reals to be supercontinuous on $[0,1]$ if the Cesaro-limit exists for the sequence $f(x_1), f(x_2), f(x_3), \dots$ whenever it does for the sequence $x_1, x_2, x_3 \dots$. Find all supercontinuous functions on $[0,1]$.
-/
theorem putnam_1972_a3
(climit_exists : (ℕ → ℝ) → Prop)
(hclimit_exists : climit_exists = fun x => ∃ C : ℝ, Tendsto (fun n => (∑ i in Finset.range n, (x i))/(n : ℝ)) atTop (𝓝 C))
(supercontinuous : (ℝ → ℝ) → Prop)
(hsupercontinuous : supercontinuous = fun f => ∀ (x : ℕ → ℝ), (∀ i : ℕ, x i ∈ Icc 0 1) → climit_exists x → climit_exists (fun i => f (x i)))
: {f | supercontinuous f} = putnam_1972_a3_solution :=
sorry
(climit_exists : (ℕ → ℝ) → Prop)
(supercontinuous : (ℝ → ℝ) → Prop)
(hclimit_exists : ∀ x, climit_exists x ↔ ∃ C : ℝ, Tendsto (fun n => (∑ i in Finset.range n, (x i))/(n : ℝ)) atTop (𝓝 C))
(hsupercontinuous : ∀ f, supercontinuous f ∀ (x : ℕ → ℝ), (∀ i : ℕ, x i ∈ Icc 0 1) → climit_exists x → climit_exists (fun i => f (x i))) :
{f | supercontinuous f} = putnam_1972_a3_solution :=
sorry
20 changes: 10 additions & 10 deletions lean4/src/putnam_1972_b2.lean
Original file line number Diff line number Diff line change
Expand Up @@ -8,13 +8,13 @@ noncomputable abbrev putnam_1972_b2_solution : ℝ → ℝ → ℝ := sorry
Let $x : \mathbb{R} \to \mathbb{R}$ be a twice differentiable function whose second derivative is nonstrictly decreasing. If $x(t) - x(0) = s$, $x'(0) = 0$, and $x'(t) = v$ for some $t > 0$, find the maximum possible value of $t$ in terms of $s$ and $v$.
-/
theorem putnam_1972_b2
(s v : ℝ)
(hs : s > 0)
(hv : v > 0)
(valid : ℝ → (ℝ → ℝ) → Prop)
(hvalid : valid = fun (t : ℝ) (x : ℝ → ℝ) ↦
DifferentiableOn ℝ x (Set.Icc 0 t) ∧ DifferentiableOn ℝ (deriv x) (Set.Icc 0 t)
AntitoneOn (deriv (deriv x)) (Set.Icc 0 t) ∧ deriv x 0 = 0 ∧ deriv x t = v ∧ x t - x 0 = s)
: (∃ x : ℝ → ℝ, valid (putnam_1972_b2_solution s v) x) ∧
∀ t > putnam_1972_b2_solution s v, ¬(∃ x : ℝ → ℝ, valid t x) :=
sorry
(s v : ℝ)
(hs : s > 0)
(hv : v > 0)
(valid : ℝ → (ℝ → ℝ) → Prop)
(hvalid : ∀ t x, valid t x ↔
DifferentiableOn ℝ x (Set.Icc 0 t) ∧ DifferentiableOn ℝ (deriv x) (Set.Icc 0 t)
AntitoneOn (deriv (deriv x)) (Set.Icc 0 t) ∧
deriv x 0 = 0 ∧ deriv x t = v ∧ x t - x 0 = s)
: IsGreatest {t | ∃ x : ℝ → ℝ, valid t x} (putnam_1972_b2_solution s v) :=
sorry
8 changes: 4 additions & 4 deletions lean4/src/putnam_1974_a1.lean
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@ abbrev putnam_1974_a1_solution : ℕ := sorry
Call a set of positive integers 'conspiratorial' if no three of them are pairwise relatively prime. What is the largest number of elements in any conspiratorial subset of the integers 1 through 16?
-/
theorem putnam_1974_a1
(conspiratorial : Set ℤ → Prop)
(hconspiratorial : conspiratorial = fun S => ∀ a ∈ S, ∀ b ∈ S, ∀ c ∈ S, (a > 0 ∧ b > 0 ∧ c > 0) ∧ ((a ≠ b ∧ b ≠ c ∧ a ≠ c) → (Int.gcd a b > 1 ∨ Int.gcd b c > 1 ∨ Int.gcd a c > 1)))
: (∀ S : Set ℤ, S ⊆ Icc 1 16 → conspiratorial S → S.encard ≤ putnam_1974_a1_solution) ∧ (∃ S : Set ℤ, S ⊆ Icc 1 16 ∧ conspiratorial S ∧ S.encard = putnam_1974_a1_solution) :=
sorry
(conspiratorial : Set ℤ → Prop)
(hconspiratorial : ∀ S, conspiratorial S ∀ a ∈ S, ∀ b ∈ S, ∀ c ∈ S, (a > 0 ∧ b > 0 ∧ c > 0) ∧ ((a ≠ b ∧ b ≠ c ∧ a ≠ c) → (Int.gcd a b > 1 ∨ Int.gcd b c > 1 ∨ Int.gcd a c > 1))) :
IsGreatest {k | ∃ S, S ⊆ Icc 1 16 ∧ conspiratorial S ∧ S.encard = k} putnam_1974_a1_solution :=
sorry
2 changes: 1 addition & 1 deletion lean4/src/putnam_1976_b6.lean
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,6 @@ theorem putnam_1976_b6
(σ : ℕ → ℤ)
(hσ : σ = fun N : ℕ => ∑ d in Nat.divisors N, (d : ℤ))
(quasiperfect : ℕ → Prop)
(quasiperfect_def : quasiperfect = fun N : ℕ => σ N = 2*N + 1)
(quasiperfect_def : ∀ N, quasiperfect N σ N = 2*N + 1)
: ∀ N : ℕ, quasiperfect N → ∃ m : ℤ, Odd m ∧ m^2 = N :=
sorry
7 changes: 4 additions & 3 deletions lean4/src/putnam_1977_a2.lean
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@ abbrev putnam_1977_a2_solution : ℝ → ℝ → ℝ → ℝ → Prop := sorry
/--
Find all real solutions $(a, b, c, d)$ to the equations $a + b + c = d$, $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{1}{d}$.
-/
theorem putnam_1977_a2
: (∀ a b c d : ℝ, a ≠ 0 → b ≠ 0 → c ≠ 0 → d ≠ 0 → ((a + b + c = d ∧ 1 / a + 1 / b + 1 / c = 1 / d) ↔ putnam_1977_a2_solution a b c d)) :=
sorry
theorem putnam_1977_a2 :
∀ a b c d : ℝ, putnam_1977_a2_solution a b c d ↔
a ≠ 0 → b ≠ 0 → c ≠ 0 → d ≠ 0 → (a + b + c = d ∧ 1 / a + 1 / b + 1 / c = 1 / d) :=
sorry
7 changes: 4 additions & 3 deletions lean4/src/putnam_1977_a4.lean
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@ noncomputable abbrev putnam_1977_a4_solution : RatFunc ℝ := sorry
/--
Find $\sum_{n=0}^{\infty} \frac{x^{2^n}}{1 - x^{2^{n+1}}}$ as a rational function of $x$ for $x \in (0, 1)$.
-/
theorem putnam_1977_a4
: (∀ x ∈ Ioo 0 1, putnam_1977_a4_solution.eval (id ℝ) x = ∑' n : ℕ, x ^ 2 ^ n / (1 - x ^ 2 ^ (n + 1))) :=
sorry
theorem putnam_1977_a4 :
∀ x ∈ Ioo 0 1,
putnam_1977_a4_solution.eval (id ℝ) x = ∑' n : ℕ, x ^ 2 ^ n / (1 - x ^ 2 ^ (n + 1)) :=
sorry
12 changes: 6 additions & 6 deletions lean4/src/putnam_1978_a3.lean
Original file line number Diff line number Diff line change
Expand Up @@ -12,9 +12,9 @@ I_k = \int_0^{\infty} \frac{x^k}{p(x)} \, dx.
For which $k$ is $I_k$ smallest?
-/
theorem putnam_1978_a3
(p : Polynomial ℝ)
(hp : p = 2 * (X ^ 6 + 1) + 4 * (X ^ 5 + X) + 3 * (X ^ 4 + X ^ 2) + 5 * X ^ 3)
(I : ℕ → ℝ)
(hI : I = fun k ↦ ∫ x in Ioi 0, x ^ k / p.eval x)
: (putnam_1978_a3_solution ∈ Ioo 0 5 ∧ ∀ k ∈ Ioo 0 5, I putnam_1978_a3_solution ≤ I k) :=
sorry
(p : Polynomial ℝ)
(hp : p = 2 * (X ^ 6 + 1) + 4 * (X ^ 5 + X) + 3 * (X ^ 4 + X ^ 2) + 5 * X ^ 3)
(I : ℕ → ℝ)
(hI : I = fun k ↦ ∫ x in Ioi 0, x ^ k / p.eval x) :
IsLeast {y | ∃ k ∈ Ioo 0 5, I k = y} putnam_1978_a3_solution :=
sorry
7 changes: 5 additions & 2 deletions lean4/src/putnam_1978_b4.lean
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,9 @@ open Set Real Filter Topology Polynomial
/--
Show that we can find integers $a, b, c, d$ such that $a^2 + b^2 + c^2 + d^2 = abc + abd + acd + bcd$, and the smallest of $a, b, c, d$ is arbitrarily large.
-/
theorem putnam_1978_b4
: (∀ N : ℝ, ∃ a b c d : ℤ, a > N ∧ b > N ∧ c > N ∧ d > N ∧ a ^ 2 + b ^ 2 + c ^ 2 + d ^ 2 = a * b * c + a * b * d + a * c * d + b * c * d) :=
theorem putnam_1978_b4 :
∀ N : ℝ,
∃ a b c d : ℤ,
a > N ∧ b > N ∧ c > N ∧ d > N ∧
a ^ 2 + b ^ 2 + c ^ 2 + d ^ 2 = a * b * c + a * b * d + a * c * d + b * c * d :=
sorry
8 changes: 4 additions & 4 deletions lean4/src/putnam_1979_a1.lean
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@ abbrev putnam_1979_a1_solution : Multiset ℕ := sorry
For which positive integers $n$ and $a_1, a_2, \dots, a_n$ with $\sum_{i = 1}^{n} a_i = 1979$ does $\prod_{i = 1}^{n} a_i$ attain the greatest value?
-/
theorem putnam_1979_a1
(P : Multiset ℕ → Prop)
(hP : P = fun a => Multiset.card a > 0 ∧ (∀ i ∈ a, i > 0) ∧ a.sum = 1979)
: P putnam_1979_a1_solution ∧ ∀ a : Multiset ℕ, P a → putnam_1979_a1_solution.prod ≥ a.prod :=
sorry
(P : Multiset ℕ → Prop)
(hP : ∀ a, P a Multiset.card a > 0 ∧ (∀ i ∈ a, i > 0) ∧ a.sum = 1979) :
P putnam_1979_a1_solution ∧ ∀ a : Multiset ℕ, P a → putnam_1979_a1_solution.prod ≥ a.prod :=
sorry
Loading

0 comments on commit 5fb3c70

Please sign in to comment.