Skip to content

Commit

Permalink
Merge pull request #238 from ocfnash/more_fixes
Browse files Browse the repository at this point in the history
Fix a few minor Lean misformalisations
  • Loading branch information
GeorgeTsoukalas authored Oct 23, 2024
2 parents 0be019d + 958aaea commit b6f0e68
Show file tree
Hide file tree
Showing 4 changed files with 17 additions and 16 deletions.
8 changes: 4 additions & 4 deletions lean4/src/putnam_1994_a1.lean
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@ open Filter Topology
Suppose that a sequence $a_1,a_2,a_3,\dots$ satisfies $0<a_n \leq a_{2n}+a_{2n+1}$ for all $n \geq 1$. Prove that the series $\sum_{n=1}^\infty a_n$ diverges.
-/
theorem putnam_1994_a1
(a : ℕ → ℝ)
(ha : ∀ n ≥ 1, 0 < a n ∧ a n ≤ a (2 * n) + a (2 * n + 1))
: ¬(∃ s : ℝ, Tendsto (fun N : ℕ => ∑ n : Set.Icc 1 N, a n) atTop (𝓝 s)) :=
sorry
(a : ℕ → ℝ)
(ha : ∀ n ≥ 1, 0 < a n ∧ a n ≤ a (2 * n) + a (2 * n + 1)) :
Tendsto (fun N : ℕ => ∑ n : Set.Icc 1 N, a n) atTop atTop :=
sorry
10 changes: 4 additions & 6 deletions lean4/src/putnam_1994_b3.lean
Original file line number Diff line number Diff line change
Expand Up @@ -7,9 +7,7 @@ abbrev putnam_1994_b3_solution : Set ℝ := sorry
/--
Find the set of all real numbers $k$ with the following property: For any positive, differentiable function $f$ that satisfies $f'(x)>f(x)$ for all $x$, there is some number $N$ such that $f(x)>e^{kx}$ for all $x>N$.
-/
theorem putnam_1994_b3
(k : ℝ)
(allfexN : Prop)
(hallfexN : allfexN = ∀ f : ℝ → ℝ, (f > 0 ∧ Differentiable ℝ f ∧ ∀ x : ℝ, deriv f x > f x) → (∃ N : ℝ, ∀ x > N, f x > Real.exp (k * x)))
: allfexN ↔ k ∈ putnam_1994_b3_solution :=
sorry
theorem putnam_1994_b3 :
{k | ∀ f (hf : (∀ x, 0 < f x ∧ f x < deriv f x) ∧ Differentiable ℝ f),
∃ N, ∀ x > N, Real.exp (k * x) < f x} = putnam_1994_b3_solution :=
sorry
13 changes: 8 additions & 5 deletions lean4/src/putnam_2010_a5.lean
Original file line number Diff line number Diff line change
@@ -1,11 +1,14 @@
import Mathlib

open scoped Matrix

/--
Let $G$ be a group, with operation $*$. Suppose that \begin{enumerate} \item[(i)] $G$ is a subset of $\mathbb{R}^3$ (but $*$ need not be related to addition of vectors); \item[(ii)] For each $\mathbf{a},\mathbf{b} \in G$, either $\mathbf{a}\times \mathbf{b} = \mathbf{a}*\mathbf{b}$ or $\mathbf{a}\times \mathbf{b} = 0$ (or both), where $\times$ is the usual cross product in $\mathbb{R}^3$. \end{enumerate} Prove that $\mathbf{a} \times \mathbf{b} = 0$ for all $\mathbf{a}, \mathbf{b} \in G$.
-/
theorem putnam_2010_a5
(G : Set (Fin 3 → ℝ))
(hGgrp : Group G)
(hGcross : ∀ a b : G, crossProduct a b = (a * b : Fin 3 → ℝ) ∨ crossProduct (a : Fin 3 → ℝ) b = 0)
: ∀ a b : G, crossProduct (a : Fin 3 → ℝ) b = 0 :=
sorry
(G : Type*) [Group G]
(i : G ↪ (Fin 3 → ℝ))
(h : ∀ a b, (i a) ×₃ (i b) = i (a * b) ∨ (i a) ×₃ (i b) = 0)
(a b : G) :
(i a) ×₃ (i b) = 0 :=
sorry
2 changes: 1 addition & 1 deletion lean4/src/putnam_2020_b5.lean
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@ For $j \in \{1, 2, 3, 4\}$, let $z_j$ be a complex number with $|z_j| = 1$ and $
-/
theorem putnam_2020_b5
(z : Fin 4 → ℂ)
(hzle1 : ∀ n, ‖z n‖ < 1)
(hzle1 : ∀ n, ‖z n‖ = 1)
(hzne1 : ∀ n, z n ≠ 1)
: 3 - z 0 - z 1 - z 2 - z 3 + (z 0) * (z 1) * (z 2) * (z 3) ≠ 0:=
sorry

0 comments on commit b6f0e68

Please sign in to comment.