Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Enhancing Termination and Truncation Handling in CleanRL's PPO Algorithm #448

Open
wants to merge 4 commits into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
366 changes: 366 additions & 0 deletions cleanrl/ppo_continuous_action_truncted.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,366 @@
# docs and experiment results can be found at https://docs.cleanrl.dev/rl-algorithms/ppo/#ppo_continuous_actionpy
import os
import random
import time
from dataclasses import dataclass

import gymnasium as gym
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import tyro
from torch.distributions.normal import Normal
from torch.utils.tensorboard import SummaryWriter


@dataclass
class Args:
exp_name: str = os.path.basename(__file__)[: -len(".py")]
"""the name of this experiment"""
seed: int = 1
"""seed of the experiment"""
torch_deterministic: bool = True
"""if toggled, `torch.backends.cudnn.deterministic=False`"""
cuda: bool = True
"""if toggled, cuda will be enabled by default"""
track: bool = False
"""if toggled, this experiment will be tracked with Weights and Biases"""
wandb_project_name: str = "cleanRL"
"""the wandb's project name"""
wandb_entity: str = None
"""the entity (team) of wandb's project"""
capture_video: bool = False
"""whether to capture videos of the agent performances (check out `videos` folder)"""
save_model: bool = False
"""whether to save model into the `runs/{run_name}` folder"""
upload_model: bool = False
"""whether to upload the saved model to huggingface"""
hf_entity: str = ""
"""the user or org name of the model repository from the Hugging Face Hub"""

# Algorithm specific arguments
env_id: str = "HalfCheetah-v4"
"""the id of the environment"""
total_timesteps: int = 1000000
"""total timesteps of the experiments"""
learning_rate: float = 3e-4
"""the learning rate of the optimizer"""
num_envs: int = 1
"""the number of parallel game environments"""
num_steps: int = 2048
"""the number of steps to run in each environment per policy rollout"""
anneal_lr: bool = True
"""Toggle learning rate annealing for policy and value networks"""
gamma: float = 0.99
"""the discount factor gamma"""
gae_lambda: float = 0.95
"""the lambda for the general advantage estimation"""
num_minibatches: int = 32
"""the number of mini-batches"""
update_epochs: int = 10
"""the K epochs to update the policy"""
norm_adv: bool = True
"""Toggles advantages normalization"""
clip_coef: float = 0.2
"""the surrogate clipping coefficient"""
clip_vloss: bool = True
"""Toggles whether or not to use a clipped loss for the value function, as per the paper."""
ent_coef: float = 0.0
"""coefficient of the entropy"""
vf_coef: float = 0.5
"""coefficient of the value function"""
max_grad_norm: float = 0.5
"""the maximum norm for the gradient clipping"""
target_kl: float = None
"""the target KL divergence threshold"""

# to be filled in runtime
batch_size: int = 0
"""the batch size (computed in runtime)"""
minibatch_size: int = 0
"""the mini-batch size (computed in runtime)"""
num_iterations: int = 0
"""the number of iterations (computed in runtime)"""


def make_env(env_id, idx, capture_video, run_name, gamma):
def thunk():
if capture_video and idx == 0:
env = gym.make(env_id, render_mode="rgb_array")
env = gym.wrappers.RecordVideo(env, f"videos/{run_name}")
else:
env = gym.make(env_id)
env = gym.wrappers.FlattenObservation(env) # deal with dm_control's Dict observation space
env = gym.wrappers.RecordEpisodeStatistics(env)
env = gym.wrappers.ClipAction(env)
env = gym.wrappers.NormalizeObservation(env)
env = gym.wrappers.TransformObservation(env, lambda obs: np.clip(obs, -10, 10))
env = gym.wrappers.NormalizeReward(env, gamma=gamma)
env = gym.wrappers.TransformReward(env, lambda reward: np.clip(reward, -10, 10))
return env

return thunk


def layer_init(layer, std=np.sqrt(2), bias_const=0.0):
torch.nn.init.orthogonal_(layer.weight, std)
torch.nn.init.constant_(layer.bias, bias_const)
return layer


class Agent(nn.Module):
def __init__(self, envs):
super().__init__()
self.critic = nn.Sequential(
layer_init(nn.Linear(np.array(envs.single_observation_space.shape).prod(), 64)),
nn.Tanh(),
layer_init(nn.Linear(64, 64)),
nn.Tanh(),
layer_init(nn.Linear(64, 1), std=1.0),
)
self.actor_mean = nn.Sequential(
layer_init(nn.Linear(np.array(envs.single_observation_space.shape).prod(), 64)),
nn.Tanh(),
layer_init(nn.Linear(64, 64)),
nn.Tanh(),
layer_init(nn.Linear(64, np.prod(envs.single_action_space.shape)), std=0.01),
)
self.actor_logstd = nn.Parameter(torch.zeros(1, np.prod(envs.single_action_space.shape)))

def get_value(self, x):
return self.critic(x)

def get_action_and_value(self, x, action=None):
action_mean = self.actor_mean(x)
action_logstd = self.actor_logstd.expand_as(action_mean)
action_std = torch.exp(action_logstd)
probs = Normal(action_mean, action_std)
if action is None:
action = probs.sample()
return action, probs.log_prob(action).sum(1), probs.entropy().sum(1), self.critic(x)


if __name__ == "__main__":
args = tyro.cli(Args)
args.batch_size = int(args.num_envs * args.num_steps)
args.minibatch_size = int(args.batch_size // args.num_minibatches)
args.num_iterations = args.total_timesteps // args.batch_size
run_name = f"{args.env_id}__{args.exp_name}__{args.seed}__{int(time.time())}"
if args.track:
import wandb

wandb.init(
project=args.wandb_project_name,
entity=args.wandb_entity,
sync_tensorboard=True,
config=vars(args),
name=run_name,
monitor_gym=True,
save_code=True,
)
writer = SummaryWriter(f"runs/{run_name}")
writer.add_text(
"hyperparameters",
"|param|value|\n|-|-|\n%s" % ("\n".join([f"|{key}|{value}|" for key, value in vars(args).items()])),
)

# TRY NOT TO MODIFY: seeding
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.backends.cudnn.deterministic = args.torch_deterministic

device = torch.device("cuda" if torch.cuda.is_available() and args.cuda else "cpu")

# env setup
envs = gym.vector.SyncVectorEnv(
[make_env(args.env_id, i, args.capture_video, run_name, args.gamma) for i in range(args.num_envs)]
)
assert isinstance(envs.single_action_space, gym.spaces.Box), "only continuous action space is supported"

agent = Agent(envs).to(device)
optimizer = optim.Adam(agent.parameters(), lr=args.learning_rate, eps=1e-5)

# ALGO Logic: Storage setup
obs = torch.zeros((args.num_steps, args.num_envs) + envs.single_observation_space.shape).to(device)
next_obs = torch.zeros((args.num_steps, args.num_envs) + envs.single_observation_space.shape).to(device)
actions = torch.zeros((args.num_steps, args.num_envs) + envs.single_action_space.shape).to(device)
logprobs = torch.zeros((args.num_steps, args.num_envs)).to(device)
rewards = torch.zeros((args.num_steps, args.num_envs)).to(device)
next_dones = torch.zeros((args.num_steps, args.num_envs)).to(device)
next_terminations = torch.zeros((args.num_steps, args.num_envs)).to(device)
values = torch.zeros((args.num_steps, args.num_envs)).to(device)

# TRY NOT TO MODIFY: start the game
global_step = 0
start_time = time.time()
next_ob, _ = envs.reset(seed=args.seed)
next_ob = torch.Tensor(next_ob).to(device)
next_done = torch.zeros(args.num_envs).to(device)
next_termination = torch.zeros(args.num_envs).to(device)

for iteration in range(1, args.num_iterations + 1):
# Annealing the rate if instructed to do so.
if args.anneal_lr:
frac = 1.0 - (iteration - 1.0) / args.num_iterations
lrnow = frac * args.learning_rate
optimizer.param_groups[0]["lr"] = lrnow

for step in range(0, args.num_steps):
global_step += args.num_envs

ob = next_ob
# ALGO LOGIC: action logic
with torch.no_grad():
action, logprob, _, value = agent.get_action_and_value(ob)

# TRY NOT TO MODIFY: execute the game and log data.
next_ob, reward, next_termination, next_truncation, info = envs.step(action.cpu().numpy())

# Correct next obervation (for vec gym)
real_next_ob = next_ob.copy()
for idx, trunc in enumerate(next_truncation):
if trunc:
real_next_ob[idx] = info["final_observation"][idx]
next_ob = torch.Tensor(next_ob).to(device)

# Collect trajectory
obs[step] = torch.Tensor(ob).to(device)
next_obs[step] = torch.Tensor(real_next_ob).to(device)
actions[step] = torch.Tensor(action).to(device)
logprobs[step] = torch.Tensor(logprob).to(device)
values[step] = torch.Tensor(value.flatten()).to(device)
next_terminations[step] = torch.Tensor(next_termination).to(device)
next_dones[step] = torch.Tensor(np.logical_or(next_termination, next_truncation)).to(device)
rewards[step] = torch.tensor(reward).to(device).view(-1)

if "final_info" in info:
for info in info["final_info"]:
if info and "episode" in info:
print(f"global_step={global_step}, episodic_return={info['episode']['r']}")
writer.add_scalar("charts/episodic_return", info["episode"]["r"], global_step)
writer.add_scalar("charts/episodic_length", info["episode"]["l"], global_step)

# bootstrap value if not done
with torch.no_grad():
next_values = torch.zeros_like(values[0]).to(device)
advantages = torch.zeros_like(rewards).to(device)
lastgaelam = 0
for t in reversed(range(args.num_steps)):
if t == args.num_steps - 1:
next_values = agent.get_value(next_obs[t]).flatten()
else:
value_mask = next_dones[t].bool()
next_values[value_mask] = agent.get_value(next_obs[t][value_mask]).flatten()
next_values[~value_mask] = values[t + 1][~value_mask]
delta = rewards[t] + args.gamma * next_values * (1 - next_terminations[t]) - values[t]
advantages[t] = lastgaelam = delta + args.gamma * args.gae_lambda * (1 - next_dones[t]) * lastgaelam
returns = advantages + values

# flatten the batch
b_obs = obs.reshape((-1,) + envs.single_observation_space.shape)
b_logprobs = logprobs.reshape(-1)
b_actions = actions.reshape((-1,) + envs.single_action_space.shape)
b_advantages = advantages.reshape(-1)
b_returns = returns.reshape(-1)
b_values = values.reshape(-1)

# Optimizing the policy and value network
b_inds = np.arange(args.batch_size)
clipfracs = []
for epoch in range(args.update_epochs):
np.random.shuffle(b_inds)
for start in range(0, args.batch_size, args.minibatch_size):
end = start + args.minibatch_size
mb_inds = b_inds[start:end]

_, newlogprob, entropy, newvalue = agent.get_action_and_value(b_obs[mb_inds], b_actions[mb_inds])
logratio = newlogprob - b_logprobs[mb_inds]
ratio = logratio.exp()

with torch.no_grad():
# calculate approx_kl http://joschu.net/blog/kl-approx.html
old_approx_kl = (-logratio).mean()
approx_kl = ((ratio - 1) - logratio).mean()
clipfracs += [((ratio - 1.0).abs() > args.clip_coef).float().mean().item()]

mb_advantages = b_advantages[mb_inds]
if args.norm_adv:
mb_advantages = (mb_advantages - mb_advantages.mean()) / (mb_advantages.std() + 1e-8)

# Policy loss
pg_loss1 = -mb_advantages * ratio
pg_loss2 = -mb_advantages * torch.clamp(ratio, 1 - args.clip_coef, 1 + args.clip_coef)
pg_loss = torch.max(pg_loss1, pg_loss2).mean()

# Value loss
newvalue = newvalue.view(-1)
if args.clip_vloss:
v_loss_unclipped = (newvalue - b_returns[mb_inds]) ** 2
v_clipped = b_values[mb_inds] + torch.clamp(
newvalue - b_values[mb_inds],
-args.clip_coef,
args.clip_coef,
)
v_loss_clipped = (v_clipped - b_returns[mb_inds]) ** 2
v_loss_max = torch.max(v_loss_unclipped, v_loss_clipped)
v_loss = 0.5 * v_loss_max.mean()
else:
v_loss = 0.5 * ((newvalue - b_returns[mb_inds]) ** 2).mean()

entropy_loss = entropy.mean()
loss = pg_loss - args.ent_coef * entropy_loss + v_loss * args.vf_coef

optimizer.zero_grad()
loss.backward()
nn.utils.clip_grad_norm_(agent.parameters(), args.max_grad_norm)
optimizer.step()

if args.target_kl is not None and approx_kl > args.target_kl:
break

y_pred, y_true = b_values.cpu().numpy(), b_returns.cpu().numpy()
var_y = np.var(y_true)
explained_var = np.nan if var_y == 0 else 1 - np.var(y_true - y_pred) / var_y

# TRY NOT TO MODIFY: record rewards for plotting purposes
writer.add_scalar("charts/learning_rate", optimizer.param_groups[0]["lr"], global_step)
writer.add_scalar("losses/value_loss", v_loss.item(), global_step)
writer.add_scalar("losses/policy_loss", pg_loss.item(), global_step)
writer.add_scalar("losses/entropy", entropy_loss.item(), global_step)
writer.add_scalar("losses/old_approx_kl", old_approx_kl.item(), global_step)
writer.add_scalar("losses/approx_kl", approx_kl.item(), global_step)
writer.add_scalar("losses/clipfrac", np.mean(clipfracs), global_step)
writer.add_scalar("losses/explained_variance", explained_var, global_step)
print("SPS:", int(global_step / (time.time() - start_time)))
writer.add_scalar("charts/SPS", int(global_step / (time.time() - start_time)), global_step)

if args.save_model:
model_path = f"runs/{run_name}/{args.exp_name}.cleanrl_model"
torch.save(agent.state_dict(), model_path)
print(f"model saved to {model_path}")
from cleanrl_utils.evals.ppo_eval import evaluate

episodic_returns = evaluate(
model_path,
make_env,
args.env_id,
eval_episodes=10,
run_name=f"{run_name}-eval",
Model=Agent,
device=device,
gamma=args.gamma,
)
for idx, episodic_return in enumerate(episodic_returns):
writer.add_scalar("eval/episodic_return", episodic_return, idx)

if args.upload_model:
from cleanrl_utils.huggingface import push_to_hub

repo_name = f"{args.env_id}-{args.exp_name}-seed{args.seed}"
repo_id = f"{args.hf_entity}/{repo_name}" if args.hf_entity else repo_name
push_to_hub(args, episodic_returns, repo_id, "PPO", f"runs/{run_name}", f"videos/{run_name}-eval")

envs.close()
writer.close()
Loading