Skip to content

[ICCV 2023] The official PyTorch implementation of the paper: "Localizing Moments in Long Video Via Multimodal Guidance"

Notifications You must be signed in to change notification settings

waybarrios/guidance-based-video-grounding

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

20 Commits
 
 
 
 
 
 

Repository files navigation

arXiv PWC

Share to Community

Guidance Based Video Grounding.

The official implementation of the paper: "Localizing Moments in Long Video Via Multimodal Guidance". In this repository, we provide the predicted scores from the Guidance Model using MAD Dataset.

News

07/14/2023: "Localizing Moments in Long Video Via Multimodal Guidance" was accepeted at ICCV 2023.

Citation

If you find this implementation useful in your research, please use the following BibTeX entry for citation:

@article{Barrios2023LocalizingMI,
  title={Localizing Moments in Long Video Via Multimodal Guidance},
  author={Wayner Barrios and Mattia Soldan and Fabian Caba Heilbron and Alberto M. Ceballos-Arroyo and Bernard Ghanem},
  journal={ArXiv},
  year={2023},
  volume={abs/2302.13372}
}

Code

Guidance Training code is located in the Guidance directoy.

Prediction Zoo.

The provided predictions correspond to the scores generated by the Guidance model using sliding windows of 64 frames and 128 frames in length. The predictions are stored in a pickle object with the following structure:

In [1]: import pickle
In [2]: with open("guidance_scores_MAD_test_128.pkl",'rb') as f:
   ...:     scores = pickle.load(f)
In [3]: len(scores)
Out[3]: 72044
In [4]: scores[0].keys()
Out[4]: dict_keys(['qid', 'vid', 'windows', 'score'])
{   'qid': '0',
    'score': array([1.48404761e-05, 1.40372722e-05, 1.46572347e-05, 1.28814381e-05,
       1.34291167e-05, 1.32850864e-05, 1.61252574e-05, 6.24697859e-05,
       4.70118430e-05, 1.63803907e-05, 2.77301951e-05, 2.59740209e-05,
       9.86061990e-01, 4.11081433e-01, 1.71889886e-02, 1.37453452e-01,
       1.75393507e-05, 1.92647931e-05, 5.38236709e-05, 6.90551009e-04,
       7.63237834e-01, 9.73204970e-02, 1.73201097e-05, 2.48163269e-05,
       5.99260893e-05, 1.84824003e-05, 2.14560350e-05, 1.04043145e-04,
       5.24206553e-05, 1.88337926e-05, 1.62523775e-05, 1.23760619e-05,
       1.15747998e-05, 1.85713252e-05, 3.93810224e-05, 4.38277610e-04,
       4.63226315e-05, 2.76185543e-04, 6.71112502e-05, 2.05889755e-05,
       5.27229131e-05, 4.56629896e-05, 2.62997986e-04, 1.23860036e-05,
       1.19574897e-05, 1.27713274e-05, 1.34036281e-05, 1.49246125e-05,
       1.66437039e-05, 1.32685755e-05, 1.36442995e-05, 1.39407657e-05,
       9.44265649e-02, 5.19266985e-02, 3.09179362e-04, 1.66565824e-05,
       1.52278981e-05, 1.34415832e-05, 1.16731699e-05, 1.19617898e-05,
       1.34421471e-05, 1.35606424e-05, 1.40685788e-05, 1.44712585e-05,
       1.49164434e-05, 1.32006107e-05, 1.23232739e-05, 1.22480678e-05,
       1.36934423e-05, 8.42598165e-05, 1.90059054e-05, 1.52820303e-05,
       1.25335091e-05, 1.30556955e-05, 1.18760063e-05, 1.14885261e-05,
       1.17362497e-05, 1.12321404e-05, 1.24243248e-04, 1.45946506e-05,
       4.47804232e-05, 1.39249141e-05, 1.34848015e-05, 3.25621368e-05,
       1.44184843e-01, 2.68866897e-05, 1.92906227e-05, 1.76019021e-05,
       1.58657276e-05, 1.28230713e-05, 1.28012252e-05, 1.29981381e-05,
       1.67807830e-05, 1.70492331e-05, 1.40562279e-05, 1.61650114e-05,
       1.47591518e-05, 1.63778402e-02, 1.42061428e-04, 6.93475548e-03,
       6.02264590e-05, 8.72147648e-05, 9.83794928e-01, 9.91553962e-01,
       9.63991106e-01, 8.97689939e-01, 1.28758256e-04, 2.88744595e-05,
       1.70378244e-05, 2.29878224e-05, 2.43768354e-05, 1.59022475e-05,
       1.30911794e-05, 1.81753130e-05, 2.05728411e-05, 1.25869919e-05,
       1.25580364e-05, 1.16062802e-05, 1.37536981e-05, 1.34730390e-05,
       1.40373795e-05, 1.33059066e-05, 1.30285189e-05, 1.37811385e-05,
       2.23064744e-05, 1.44057722e-05, 1.42116378e-05, 1.93661017e-05,
       1.58555758e-05, 1.43071402e-05, 1.38224150e-05, 1.28803194e-05,
       1.20950817e-05, 1.41009232e-05, 1.45958602e-05, 1.23285527e-05,
       1.38767664e-05, 1.59005958e-05, 1.49218240e-05, 1.21883040e-05,
       1.24096860e-05, 1.63976423e-04, 3.71323113e-05, 1.49581110e-05,
       1.28865731e-05, 8.20189889e-05, 1.94104978e-05, 1.45575204e-05,
       1.19119395e-05, 1.17359577e-05, 1.33997301e-05, 1.31552797e-05,
       1.29547625e-05, 1.46081702e-05, 1.37864763e-05, 2.89076870e-05,
       2.40834688e-05, 2.44160365e-05, 3.74382762e-05, 4.72434871e-02,
       1.53820711e-05, 1.25494762e-05, 1.16858791e-05, 1.33582507e-05,
       6.86281201e-05, 1.72452001e-05, 1.32617952e-05, 1.24350836e-05,
       1.32563446e-05, 1.50281312e-05, 2.07685662e-05, 3.12883203e-05,
       5.31642836e-05, 7.05183193e-05, 1.51949525e-05, 1.41901855e-05,
       1.51822069e-05, 3.32951342e-04, 8.94680124e-05, 1.65749607e-05,
       2.18829446e-05, 2.16037024e-05, 1.89978218e-05, 4.97834710e-03,
       2.03153506e-01, 1.54585496e-03, 1.23195614e-05, 1.28703259e-05,
       1.51874347e-05, 1.30843009e-05, 1.32952518e-05, 1.83968314e-05,
       3.42841486e-05, 9.24622072e-05, 1.33280428e-05, 1.38418063e-05,
       1.52235261e-05, 1.41796754e-05, 1.46450093e-05, 2.20195379e-05,
       1.83107302e-04, 1.82420099e-05, 1.50840988e-05, 1.33859876e-05,
       1.51073200e-05, 1.47391929e-05, 1.49910848e-05, 1.53916826e-05,
       1.31657725e-05, 1.38312898e-05, 1.90024621e-05, 1.58155744e-05,
       1.31786610e-05, 1.57141967e-05, 1.65828824e-05, 1.46924167e-05,
       1.38433634e-05, 5.21887268e-05, 2.85502132e-02, 2.30753481e-01,
       7.06195598e-04, 1.50714346e-04, 1.27303065e-03, 1.33986650e-02,
       7.64285505e-04, 2.07327234e-04, 6.83149046e-05, 3.26294066e-05,
       3.00217052e-05, 3.59058060e-04, 1.75943842e-05, 4.50351909e-05,
       6.54372343e-05, 7.06970895e-05, 3.67312983e-04, 1.05719395e-01,
       4.43235294e-05, 2.82063011e-05, 7.51458792e-05, 1.61291231e-04,
       4.26617444e-05, 8.98458238e-05, 5.37320266e-05, 7.81280905e-05,
       4.74652685e-02, 6.73964678e-04, 7.80265400e-05, 2.98924297e-05,
       4.71418061e-05, 9.99735785e-05, 5.41929447e-04, 8.76590490e-01,
       7.32870936e-01, 9.47873652e-01, 9.83479261e-01, 9.41197515e-01,
       3.02340268e-05, 5.52863061e-01, 4.90591303e-02, 5.52392844e-03,
       1.66527767e-04, 6.01128559e-05, 2.75078182e-05, 5.36037696e-05,
       2.72706511e-05, 5.20218709e-05, 1.74067172e-04, 9.59624112e-01,
       9.92105484e-01, 6.41801059e-01, 7.50956178e-01, 1.66324535e-05,
       1.36247700e-05, 1.38954510e-05, 1.32978639e-05, 2.76602568e-05,
       8.64359558e-01, 2.82314628e-01, 6.86250278e-04, 1.61339794e-05,
       1.76240802e-01, 6.14342950e-02, 1.79430062e-05, 1.85770459e-05,
       2.49132900e-05, 4.90641105e-05, 1.38329369e-05, 1.35371911e-05,
       1.19879533e-05, 1.28572465e-05, 1.49452917e-05, 1.34064794e-05,
       1.20641280e-05, 1.38642654e-05, 1.28597740e-05, 1.21135636e-05,
       1.19547185e-05, 1.27106450e-05, 1.24800990e-05, 1.45651029e-05,
       1.51306494e-05, 1.31757206e-05, 1.44625528e-05, 2.93072371e-05,
       1.55961770e-05, 1.38226005e-05, 2.85501122e-01, 9.54893649e-01,
       4.26807284e-01, 7.88133383e-01, 1.15605462e-05, 1.27675758e-05,
       1.74503912e-05, 1.22338257e-04, 4.07951375e-05, 6.67655331e-05,
       2.63322181e-05, 6.43799603e-01, 9.40359533e-01, 8.85976017e-01,
       4.58170444e-01, 1.68637175e-03, 5.94505800e-05, 9.05500948e-01,
       3.18567127e-01, 4.67336411e-03, 2.84927974e-05, 3.81192891e-03,
       4.18508105e-04, 6.88799983e-03, 9.18629944e-01, 8.45510900e-01,
       1.88187569e-01, 1.15205767e-02, 6.14926934e-01, 9.16110933e-01,
       3.21912378e-01, 9.68408361e-02, 2.36877706e-03, 3.30457231e-04,
       9.32341874e-01, 6.69624686e-01, 3.61131132e-02, 4.71764088e-01,
       3.23702669e-04, 5.40765934e-04, 2.96235172e-04, 1.00755557e-01,
       2.59187482e-02, 9.91479377e-04, 5.00017107e-02, 9.33302939e-03,
       8.73835742e-01, 9.06303883e-01, 1.98892485e-02, 2.06603622e-03,
       2.67300452e-03, 1.63171062e-05, 4.14947972e-05, 2.11949199e-02,
       5.66720143e-02, 6.37245998e-02, 3.02139521e-01, 4.86139301e-03,
       6.51149167e-05, 8.24632589e-05, 2.42551632e-05, 2.16892213e-01,
       9.93161321e-01, 9.07774687e-01, 9.85157251e-01, 7.91489899e-01,
       6.24064269e-05, 2.82448274e-03, 6.10993884e-05, 4.63459146e-05,
       6.72110255e-05, 2.53440558e-05, 2.50527592e-05, 4.85404918e-04,
       7.80891351e-05, 4.56315975e-05, 1.90765320e-04, 8.94685328e-01,
       9.85134244e-01, 9.36044097e-01, 1.42211165e-05, 1.49489415e-05,
       1.69001578e-05, 1.66201044e-05, 2.41175085e-01, 5.41068694e-05,
       1.77346919e-05, 3.90491296e-05, 2.48894852e-04, 1.45345357e-05,
       1.64555768e-05, 1.53538731e-05, 1.38164451e-05, 1.68559291e-05,
       3.19991705e-05, 2.60154466e-05, 1.41664159e-05, 1.22337908e-04,
       4.30386774e-02, 3.52067378e-04, 2.77736799e-05, 1.43605203e-05,
       1.33721569e-05, 1.43800498e-05, 1.23751524e-05, 2.31819286e-05,
       9.83208010e-05, 2.08199883e-04, 3.14763274e-05, 3.47468827e-04,
       1.10434856e-04, 3.18150487e-05, 1.72609471e-05, 2.70375167e-05,
       1.67231119e-05, 1.80254483e-05, 2.09855771e-05, 1.66565824e-05,
       1.64901703e-05, 3.01825115e-04, 7.29017615e-01, 1.12410297e-03,
       6.18876831e-04, 2.08720026e-04, 2.29539564e-05, 1.47635437e-05,
       4.10786743e-05, 2.57481169e-02, 8.77772836e-05, 4.92439649e-05,
       9.44633852e-04, 2.61720526e-03, 8.41950595e-01, 8.63339067e-01,
       5.76047751e-05, 8.71496499e-01, 9.07008648e-01, 8.54207218e-01,
       3.62060557e-04, 7.98364286e-04, 7.50755966e-02, 3.81207588e-04,
       6.62766863e-03, 1.50808028e-03, 5.67528963e-01, 7.69607246e-01,
       4.62092081e-04, 1.82087897e-04, 9.24605787e-01, 9.67480242e-01,
       3.22210602e-03, 3.38318609e-02, 7.42516349e-05, 2.80661490e-02,
       7.69108906e-03, 8.99414954e-05, 5.23393810e-01, 7.17914104e-01,
       5.11704478e-04, 2.06177612e-03, 7.79069304e-01, 1.28432157e-05,
       1.51723981e-01, 7.02154310e-03, 9.71324384e-01, 8.30839634e-01,
       6.24295863e-05, 1.97836489e-05, 1.80826428e-05, 1.67380622e-05,
       1.57646009e-05, 5.96713580e-05, 7.05929342e-05, 2.16401986e-05,
       1.69063496e-05, 1.36657072e-05, 1.44965925e-05, 2.01106413e-05,
       1.66287136e-05, 1.51022632e-05, 1.20727018e-05, 1.36815515e-05,
       1.57434170e-05, 3.38077080e-03, 1.93943546e-04, 1.50704973e-05,
       1.36058252e-05, 1.23554828e-05, 1.20090635e-05, 1.20484674e-05,
       1.15330831e-05, 1.24158278e-05, 1.21374187e-05, 1.20495934e-05,
       1.25650204e-05, 1.16137307e-05, 1.18198168e-05, 1.15763123e-05,
       1.24373146e-05, 1.25643137e-05, 1.48531772e-05, 1.28844113e-05,
       1.19790957e-05, 1.42352001e-05, 2.61451223e-05, 1.16819347e-05],
      dtype=float32),
    'vid': '3001_21_JUMP_STREET',
    'windows': array([[    0,   128],
       [   64,   192],
       [  128,   256],
       ...,
       [32576, 32704],
       [32640, 32768],
       [32704, 32832]])}

Download

The predictions are available on HuggingFace repo.

Run Guidance Training

The following command line run the Guidance Training at query-dependent setup:

$ bash guidance/scripts/train.sh --num_workers 20

How to get Audio Features from MAD?

To download Audio Features from MAD dataset use the following link: Google Drive File. Do not forget to cite if you use the audio features only.

How to do scoring fusion?

To do the scoring fusion please refer the examples located in the following directory.

Contact

email: [email protected] or [email protected]

About

[ICCV 2023] The official PyTorch implementation of the paper: "Localizing Moments in Long Video Via Multimodal Guidance"

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published