Skip to content

wsy-yjys/FLDet

Repository files navigation

FLDet: A Faster and Lighter Aerial Object Detector

Benchmark

VisDrone2019

Model Size AP(%) AP50(%) #Params. FLOPs Latency FPS Weight&train.log
FLDet-N 640 16.7 30.1 1.2M 12.3G 17.9ms 55.9 Google Drive
FLDet-S 640 18.8 33.4 2.4M 26.9G 24.3ms 41.2 Google Drive

UAVDT

Model Size AP(%) AP50(%) #Params. FLOPs Latency FPS Weight&train.log
FLDet-N 640 16.8 28.8 1.2M 12.3G 17.8ms 56.2 Google Drive
FLDet-S 640 17.5 30.3 2.4M 26.9G 24.2ms 41.3 Google Drive

Code

The repo is the official implementation of FLDet.

Our config file is at ultralytics/cfg/models/FLDet

Requirement

  1. Install torch 2.0.1 and torchvision 0.15.2
pip install torch==2.0.1 torchvision==0.15.2 --index-url https://download.pytorch.org/whl/cu118
  1. Install other requirements
pip install -e .

Usage

Data preparation

You could download dataset form VisDrone(YOLO Format) and UAVDT dataset (YOLO Format) .

Training

1. VisDrone2019

% FLDet-N
yolo detect train data=VisDrone_test.yaml model=FLDet-N.yaml imgsz=640 device=0,1,2,3 optimizer=SGD batch=32 lr0=0.02 name=test_VisDrone_FLDet-N patience=0 epochs=300 save_json=True mosaic=1.0 copy_paste=1.0 mixup=1.0 close_mixup=225 close_mosaic=150 close_copy_paste=75 decay_aug=True > test_VisDrone_FLDet-N.log 2>&1 &

% FLDet-S
yolo detect train data=VisDrone_test.yaml model=FLDet-S.yaml imgsz=640 device=0,1,2,3 optimizer=SGD batch=32 lr0=0.02 name=test_VisDrone_FLDet-S patience=0 epochs=300 save_json=True mosaic=1.0 copy_paste=1.0 mixup=1.0 close_mixup=225 close_mosaic=150 close_copy_paste=75 decay_aug=True > test_VisDrone_FLDet-S.log 2>&1 &

More super parameters about training please refer to Ultralytics YOLOv8 Docs.

2. UAVDT

% FLDet-N
yolo detect train data=UAVDT.yaml model=FLDet-N.yaml imgsz=640 device=0,1,2,3 optimizer=SGD lr0=0.08 name=test_UAVDT_FLDet-N epochs=100 batch=32 save_json=True decay_aug=True mosaic=1.0 copy_paste=1.0 mixup=1.0 close_mixup=75 close_mosaic=50 close_copy_paste=25 > test_UAVDT_FLDet-N.log 2>&1 &

% FLDet-S
yolo detect train data=UAVDT.yaml model=FLDet-S.yaml imgsz=640 device=0,1,2,3 optimizer=SGD lr0=0.08 name=test_UAVDT_FLDet-S epochs=100 batch=32 save_json=True decay_aug=True mosaic=1.0 copy_paste=1.0 mixup=1.0 close_mixup=75 close_mosaic=50 close_copy_paste=25 > test_UAVDT_FLDet-S.log 2>&1 &

Evaluation

yolo detect val data=/path/to/data.yaml model=/path/to/your/best.pt testspeed=False save_json=True name=your-work-dir half=True > val.log 2>&1 &

About

No description, website, or topics provided.

Resources

License

Security policy

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages