Model | Size | AP(%) | AP50(%) | #Params. | FLOPs | Latency | FPS | Weight&train.log |
---|---|---|---|---|---|---|---|---|
FLDet-N | 640 | 16.7 | 30.1 | 1.2M | 12.3G | 17.9ms | 55.9 | Google Drive |
FLDet-S | 640 | 18.8 | 33.4 | 2.4M | 26.9G | 24.3ms | 41.2 | Google Drive |
Model | Size | AP(%) | AP50(%) | #Params. | FLOPs | Latency | FPS | Weight&train.log |
---|---|---|---|---|---|---|---|---|
FLDet-N | 640 | 16.8 | 28.8 | 1.2M | 12.3G | 17.8ms | 56.2 | Google Drive |
FLDet-S | 640 | 17.5 | 30.3 | 2.4M | 26.9G | 24.2ms | 41.3 | Google Drive |
The repo is the official implementation of FLDet.
Our config file is at ultralytics/cfg/models/FLDet
pip install torch==2.0.1 torchvision==0.15.2 --index-url https://download.pytorch.org/whl/cu118
- Install other requirements
pip install -e .
You could download dataset form VisDrone(YOLO Format) and UAVDT dataset (YOLO Format) .
% FLDet-N
yolo detect train data=VisDrone_test.yaml model=FLDet-N.yaml imgsz=640 device=0,1,2,3 optimizer=SGD batch=32 lr0=0.02 name=test_VisDrone_FLDet-N patience=0 epochs=300 save_json=True mosaic=1.0 copy_paste=1.0 mixup=1.0 close_mixup=225 close_mosaic=150 close_copy_paste=75 decay_aug=True > test_VisDrone_FLDet-N.log 2>&1 &
% FLDet-S
yolo detect train data=VisDrone_test.yaml model=FLDet-S.yaml imgsz=640 device=0,1,2,3 optimizer=SGD batch=32 lr0=0.02 name=test_VisDrone_FLDet-S patience=0 epochs=300 save_json=True mosaic=1.0 copy_paste=1.0 mixup=1.0 close_mixup=225 close_mosaic=150 close_copy_paste=75 decay_aug=True > test_VisDrone_FLDet-S.log 2>&1 &
More super parameters about training please refer to Ultralytics YOLOv8 Docs.
% FLDet-N
yolo detect train data=UAVDT.yaml model=FLDet-N.yaml imgsz=640 device=0,1,2,3 optimizer=SGD lr0=0.08 name=test_UAVDT_FLDet-N epochs=100 batch=32 save_json=True decay_aug=True mosaic=1.0 copy_paste=1.0 mixup=1.0 close_mixup=75 close_mosaic=50 close_copy_paste=25 > test_UAVDT_FLDet-N.log 2>&1 &
% FLDet-S
yolo detect train data=UAVDT.yaml model=FLDet-S.yaml imgsz=640 device=0,1,2,3 optimizer=SGD lr0=0.08 name=test_UAVDT_FLDet-S epochs=100 batch=32 save_json=True decay_aug=True mosaic=1.0 copy_paste=1.0 mixup=1.0 close_mixup=75 close_mosaic=50 close_copy_paste=25 > test_UAVDT_FLDet-S.log 2>&1 &
yolo detect val data=/path/to/data.yaml model=/path/to/your/best.pt testspeed=False save_json=True name=your-work-dir half=True > val.log 2>&1 &