DeepGNN is a framework for training machine learning models on large scale graph data. DeepGNN contains all the necessary features including:
- Distributed GNN training and inferencing on both CPU and GPU.
- Custom graph neural network design.
- Online Sampling: Graph Engine (GE) will load all graph data, each training worker will call GE to get node/edge/neighbor features and labels.
- Automatic graph partitioning.
- Highly performant and scalable.
Project is in alpha version, there might be breaking changes in the future and they will be documented in the changelog.
Install pip package:
python -m pip install deepgnn-torch
If you want to build package from source, see instructions in CONTRIBUTING.md
.
Train and evaluate a graphsage model with pytorch on cora dataset:
cd examples/pytorch/graphsage
./run.sh
Examples folder contains various models one can experiment with DeepGNN. To train models with Tensorflow you need to install deepgnn-tf
package, deepgnn-torch
package contains packages to train pytorch examples. Each model folder contains a shell script run.sh
that will train a corresponding model on a toy graph, a README.md
file with a short description of a model, reference to original paper, and explanation of command line arguments.
We provide a python module to help you upgrade your scripts to new deepgnn versions.
pip install google-pasta
python -m deepgnn.migrate.0_1_56 --script_dir directory_to_migrate
See CHANGELOG.md
for full change details.