This is a caffe implementation of the YOLO:Real-Time Object Detection
Note, the caffe models are not trained in caffe, but converted from darknet's (.weight) files (http://pjreddie.com/darknet/yolo/).
These caffemodel files have been converted for you.
-
YOLO: https://drive.google.com/file/d/0Bzy9LxvTYIgKMXdqS29HWGNLdGM/view?usp=sharing
-
YOLO_small: https://drive.google.com/file/d/0Bzy9LxvTYIgKa3ZHbnZPLUo0eWs/view?usp=sharing
-
YOLO_tiny: https://drive.google.com/file/d/0Bzy9LxvTYIgKNFEzOEdaZ3U0Nms/view?usp=sharing
If you want to create the caffemodel files from yolo's (.weights) files on your own,
-
first, you need to download the pretrained yolo weight files in the darknet official website (http://pjreddie.com/darknet/yolo/)
-
after that, run create_yolo_caffemodel.py to create the caffemodel from yolo's (.weight) files
- "python create_yolo_caffemodel.py -m train_val_prototxt.filename -w yoloweights_filename -o caffemodel_filename"
replace train_val_prototxt.filename with /your/path/to/yolo_train_val.prototxt (yolo_small, yolo_tiny), yoloweights_filename with /your/path/to/yolo.weights (yolo-small, yolo-tiny), and caffemodel_filename with your output caffemodel name,
e.g. "python create_yolo_caffemodel.py -m yolo_train_val.prototxt -w yolo.weights -o yolo.caffemodel"
run yolo_main.py to do yolo object detection for the input image
- "python yolo_main.py -m model_filename -w weight_filename -i image_filename"
replace model_filename with /your/path/to/yolo_small_deploy.prototxt or yolo_tiny_deploy.prototxt, weight_filename with /your/path/to/yolo_tiny.caffemodel or yolo_small.caffemodel and image_filename with the target image file
-
Caffe, pycaffe
-
Opencv2
According to the LICENSE file of the original code,
-
Me and original author hold no liability for any damages
-
Do not use this on commercial!