Yolo V4 Implemented in Tensorflow 2.0. Convert .weights to .tflite format for tensorflow lite.
Download yolov4.weights file: https://drive.google.com/open?id=1cewMfusmPjYWbrnuJRuKhPMwRe_b9PaT
- Tensorflow 2.1.0
- tensorflow_addons 0.9.1 (required for mish activation)
# yolov4
python detect.py --weights ./data/yolov4.weights --framework tf --size 608 --image ./data/kite.jpg
# yolov4 tflite
python detect.py --weights ./data/yolov4-int8.tflite --framework tflite --size 416 --image ./data/kite.jpg
# yolov4
python convert_tflite.py --weights ./data/yolov4.weights --output ./data/yolov4.tflite
# yolov4 quantize int8
python convert_tflite.py --weights ./data/yolov4.tf --output ./data/yolov4-int8.tflite --quantize_mode int8
# yolov4 quantize float16
python convert_tflite.py --weights ./data/yolov4.tf --output ./data/yolov4-fp16.tflite --quantize_mode float16
# preprocess coco dataset
cd data
mkdir dataset
cd ..
cd scripts
python coco_convert.py --input COCO_ANOTATION_DATA_PATH --output val2017.pkl
python coco_annotation.py --coco_path COCO_DATA_PATH
cd ..
# evaluate yolov4 model
python evaluate.py --weights ./data/yolov4.weights
cd mAP/extra
python remove_space.py
cd ..
python main.py --output results_yolov4_tf
- Training code
- greedy NMS
- Update scale xy
- ciou
- Mosaic data augmentation
- Mish activation
- yolov4 tflite version
- yolov4 in8 tflite version for mobile
My project is inspired by these previous fantastic YOLOv3 implementations: