Skip to content

zgsxwsdxg/R2CNN_FPN_Tensorflow

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

26 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

The code is being sorted out and the complete code and instructions are will uploaded soon.Stay tuned.

A Tensorflow implementation of FPN or R2CNN detection framework based on FPN . The paper references R2CNN Rotational Region CNN for Orientation Robust Scene Text Detection or Feature Pyramid Networks for Object Detection

Configuration Environment

ubuntu + python2 + tensorflow1.2 + cv2 + cuda8.0 + GeForce GTX 1080
If you want to use cpu, you need to modify the parameters of NMS and IOU functions use_gpu = False
You can also use docker environment, command: docker push yangxue2docker/tensorflow3_gpu_cv2_sshd:v1.0

Make tfrecord

data path format
VOCdevkit

VOCdevkit_train

Annotation
JPEGImages

VOCdevkit_test

Annotation
JPEGImages

python ./data/io/convert_data_to_tfrecord.py --VOC_dir='***/VOCdevkit/VOCdevkit_train/' --save_name='train' --img_format='.jpg' --dataset='ship'

Train

1、Configure parameters in ./libs/configs/cfgs.py and modify the project's root directory
2、Modify ./libs/lable_name_dict.py, corresponding to the number of categories in the configuration file
3、download pretrain weight(resnet_v1_101_2016_08_28.tar.gz or resnet_v1_50_2016_08_28.tar.gz) from here, then extract to folder ./data/pretrained_weights 4、Choose a model(FPN and R2CNN)
If you want to train FPN:

python ./tools/train.py

elif you want to train R2CNN:

python ./tools/train1.py

Test tfrecord

mkdir test_result
python ./tools/test.py(test1.py)

Test images

put images in ./tools/inference_image, and mkdir inference_result
python ./tools/inference.py(inference1.py)

eval

python ./tools/eval.py(eval1.py)

Summary

tensorboard ---logdir=./output/summary/

Test results

01
02
03
04

05
06
07
08

About

R2CNN: Rotational Region CNN Based on FPN (Tensorflow)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%