If you cite this work, please use:
Huang, Z., Zandberg, K., Schleiser, K., & Baccelli, E. (2024). RIOT-ML: toolkit for over-the-air secure updates and performance evaluation of TinyML models. Annals of Telecommunications, 1-15.
For more information on this work, read this publication.
- 2024-08-14: We are thrilled to release the new feature export standalone version, feel free to try it out!
It is important to clone the submodules along, with --recursive
option.
git clone --recursive [email protected]:TinyPART/RIOT-ML.git
Or open the git shell after clone, and type the following command.
git submodule init
git submodule update
This toolkit is tested under:
- Linux Mint 21.1 (5.15.0-58-generic)
- Python 3.10.8
- LLVM 14.0.0
- CMAKE 3.22.1
First, Follow the instruction from official docs.
It is recommended to switch on the following options in config.cmake
:
USE_GRAPH_EXECUTOR
USE_PROFILER
USE_MICRO
USE_LLVM
For CUDA users, it is recommended to switch USE_CUDA
on.
For PyTorch users, it is recommended to set (USE_LLVM "/path/to/llvm-config --link-static")
and set(HIDE_PRIVATE_SYMBOLS ON)
.
After built up the TVM libraries, set the environment variable to tell python where to find the packages:
export TVM_HOME=/path/to/tvm
export PYTHONPATH=$TVM_HOME/python:${PYTHONPATH}
The vanilla executor in TVM calls inexistent __nop operators, which will crash the RPC runtime on the board. If you want to try the Per-Operator evaluation, please patch the executor and (re)build TVM with the following commands:
cp <path-to-utoe>/patch/fixup_skip_nop_op.patch /path/to/tvm
cd /path/to/tvm
git apply fixup_skip_nop_op.patch
( (re)build tvm )
Please refer to the doc Getting started - Compiling RIOT
For RISC-V toolchain, please enable multilib support.
Use the command below to install the dependencies:
pip install -r requirements.txt
To use remote boards on FIT IoT-LAB, please first register a testbed account and set up SSH access. After that, use following commands to store the credentials for U-TOE:
iotlab-auth -u <login user name>
iotlab-auth --add-ssh-key
! FOR PYTORCH USER ! Please first transform your model in TorchScript representation !
Before running the evaluation, please get your model files ready from ML frameworks (TFLite, PyTorch etc.). You can find some model file examples in model_zoo
folder.
You just want a clean, ready-for-deploy workspace for model inference / update and on-device training, and want to throw out all the unnecessary measurements, CoAP server etc. parts? No problem, please kindly try out the export_standalone.py
program, e.g.
python export_standalone.py --board nrf52840dk ./model_zoo/mnist_0.983_quantized.tflite ../temp
Then you will get your C code only for model inference on the ../temp
folder. In future we will also support standalone version for model update and on-device training.
Please refer to Running Model Update on IoT Boards.
U-TOE provides a command line interface (CLI) entry u-toe.py
, see below:
> python u-toe.py -h
usage: u-toe.py [-h] [--per-model | --per-ops] [--board BOARD] [--use-iotlab] [--iotlab-node IOTLAB_NODE] [--random-seed RANDOM_SEED] [--trials-num TRIALS_NUM] model_file
positional arguments:
model_file path to machine leearning model file.
options:
-h, --help show this help message and exit
--per-model Per-Model Evaluation (default).
--per-ops Per-Operator Evaluation.
--board BOARD IoT board name
--use-iotlab use remote board in FIT IoT-LAB.
--iotlab-node IOTLAB_NODE
remote node url. It will start an new experiment if this field is empty.
--random-seed RANDOM_SEED
default: 42
--trials-num TRIALS_NUM
defalut: 10
- Local example:
python u-toe.py --per-model --board stm32f746g-disco ./model_zoo/mnist_0.983_quantized.tflite
This command will start a Per-Model evaluation on local board stm32f746g-disco
, using LeNet-5 INT8
model.
- FIT-IoT Lab example:
python u-toe.py --per-model --use-iotlab --board iotlab-m3 ./model_zoo/mnist_0.983_quantized.tflite
This command will start a IoT-Lab experiment and execute a Per-Model evaluation on remote board iotlab-m3
, using LeNet-5 INT8
model.
- Output example:
Board Memory (KB) Storage (KB) 95-CI (ms) Mean (ms) Median (ms) Min. (ms) Max. (ms)
--------- ------------- -------------- ---------------- ----------- ------------- ----------- -----------
iotlab-m3 11.08 65.232 [97.739, 97.757] 97.748 97.751 97.733 97.764
! Please first patch TVM executor before trying out this feature. !
- Local example
python u-toe.py --per-ops --board stm32f746g-disco ./model_zoo/sinus_float.tflite
This command will start a Per-Operator evaluation on local board stm32f746g-disco
, using sinus
model.
-
FIT IoT-Lab Example: comming soon...
-
Output example
Ops Time (us) Time (%) Params Memory (KB) Storage (KB)
------------------------------------------- ----------- ---------- ------------ ------------- --------------
tvmgen_default_fused_nn_dense_add_nn_relu 8.853 15.217 ['p0', 'p1'] 0.128 0.128
tvmgen_default_fused_nn_dense_add_nn_relu_1 46.682 80.236 ['p2', 'p3'] 0.128 1.088
tvmgen_default_fused_nn_dense_add 2.646 4.548 ['p4', 'p5'] 0.02 0.068
The following code is adapted from https://tvm.apache.org/docs/how_to/compile_models/from_pytorch.html
# the vanilla pytorch model
model = model.eval()
# We grab the TorchScripted model via tracing
input_shape = [1, 3, 224, 224]
input_data = torch.randn(input_shape)
scripted_model = torch.jit.trace(model, input_data).eval()
scripted_model.save("torchscrpited_model.pth")
Model | Task | Description | File name |
---|---|---|---|
LeNet-5 INT8 | Image Classification | Quantized LeNet-5 in INT8, trained on MINST dataset | mnist_0.983_quantized.tflite |
MobileNetV1-0.25x INT8 | Visual Wake Words | Quantized MobileNetV1 in INT8, with width multiplier 0.25 | vww_96_int8.tflite |
DS-CNN Small INT8 | Keyword Spotting | Quantized depthwise separable CNN in INT8 | ds_cnn_s_quantized.tflite |
Deep AutoEncoder INT8 | Anomaly Detection | Quantized deep autoencoder in INT8 | ad01_int8.tflite |
RNNoise INT8 | Noise Suppression | Quantized GRU-based network in INT8 | rnnoise_INT8.tflite |
Sinus | Regression | TFLite sine value example | sinus_float.tflite |
We benchmarked various IoT boards with representative ML models, which can be found in the model zoo.
Board / MCU | Core | Memory (KB) | Storage (KB) | Computational Latency (ms) | |||
---|---|---|---|---|---|---|---|
95%-CI | Median | Min. | Max. | ||||
b-l072z-lrwan1 / STM32L072CZ | M0+ @ 32 MHz | 11.288 | 64.34 | [261.829, 262.249] | 262.187 | 261.35 | 262.216 |
samr21-xpro / ATSAMR21G18A | M0+ @ 48 MHz | 11.292 | 64.956 | [182.058, 182.083] | 182.068 | 182.04 | 182.097 |
samr30-xpro / ATSAMR30G18A | M0+ @ 48 MHz | 11.208 | 65.168 | [176.936, 176.965] | 176.958 | 176.924 | 176.975 |
samr34-xpro / ATSAMR34J18 | M0+ @ 48 MHz | 11.296 | 65.436 | [178.686, 178.718] | 178.708 | 178.669 | 178.732 |
arduino-zero / ATSAMD21G18 | M0+ @ 48 MHz | 11.292 | 64.94 | [182.061, 182.082] | 182.068 | 182.051 | 182.098 |
openmote-b / CC2538SF53 | M3 @ 32 MHz | 11.1 | 66.08 | [200.337, 200.384] | 200.367 | 200.323 | 200.404 |
IoT-LAB M3 / STM32F103REY | M3 @ 72 MHz | 11.296 | 62.26 | [97.74, 97.757] | 97.751 | 97.733 | 97.764 |
nucleo-wl55jc / STM32WL55JC | M4 @ 48 MHz | 11.288 | 63.18 | [98.649, 98.668] | 98.661 | 98.637 | 98.679 |
nrf52dk / nRF52832 | M4 @ 64 MHz | 11.328 | 61.012 | [66.124, 66.152] | 66.132 | 66.096 | 66.158 |
nrf52840dk / nRF52840 | M4 @ 64 MHz | 11.348 | 61.332 | [66.078, 66.112] | 66.088 | 66.087 | 66.163 |
b-l475e-iot01a / STM32L475VG | M4 @ 80 MHz | 11.288 | 61.604 | [52.9, 52.901] | 52.901 | 52.9 | 52.902 |
stm32f746g-disco / STM32F746NG | M7 @ 216 MHz | 11.076 | 64.712 | [39.6, 39.602] | 39.601 | 39.599 | 39.604 |
esp32-wroom-32 / ESP32-D0WDQ6 | ESP32 @ 80 MHz | 115.958 | 157.719 | [85.58, 85.583] | 85.582 | 85.576 | 85.584 |
hifive1b / SiFive FE310-G002 | RISC-V @ 320 MHz | 60.884 | 66.492 | [153.621, 154.166] | 153.747 | 153.717 | 154.938 |