This is the official implementation code of the paper "ArtDet: Machine Learning Software for Automated Detection of Art Deterioration in Easel Paintings" (Paper
)
[[Paper
]Soon] [Dataset
] [BibTeX
]
git clone https://github.com/frangam/artdet.git
cd artdet
-
Install Python 3.12 (if not already installed). On macOS or Linux:
sudo apt update sudo apt install -y python3.12 python3.12-venv python3.12-dev
For macOS (if using Homebrew):
brew install [email protected]
-
Create a virtual environment using Python 3.12:
python3.12 -m venv venv
-
Activate the environment:
On macOS/Linux:
source venv/bin/activate
On Windows:
.\venv\Scripts\activate
git clone https://github.com/alsombra/Mask_RCNN-TF2.git
cd Mask_RCNN-TF2
pip install -r requirements.txt
python setup.py install
cd ..
pip install -r requirements.txt
python src/run.py
You can download our ArtInsight Dataset at:
Click the links below to download the checkpoint for the corresponding model type.
If you use our code in your research, please use the following BibTeX entry:
@article{Garcia-Moreno-PWPF,
title={ArtDet: Machine Learning Software for Automated Detection of Art Deterioration in Easel Paintings},
author={Garcia-Moreno, Francisco Manuel and Cortés Alcázar, Jesús and del Castillo de la Fuente, Jose Manuel and Rodríguez-Simón, Luis Rodrigo and Hurtado-Torres, María Visitación},
year={2024},
journal={pending},
doi={pending},
}
And also cite our Dataset:
(Submitted to)
@article{Garcia-MorenoArtInsight,
title={ArtInsight: A Detailed Dataset for Detecting Deterioration in Easel Paintings},
author={Garcia-Moreno, Francisco Manuel and del Castillo de la Fuente, Jose Manuel and Rodríguez-Simón, Luis Rodrigo and Hurtado-Torres, María Visitación},
year={2024},
journal={Data in Brief}
doi={pending},
url={},
}