Skip to content

ElsevierSoftwareX/SOFTX-D-24-00384

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ArtDet: Machine Learning Software for Automated Detection of Art Deterioration in Easel Paintings

License: GNU 3 GitHub all releases

This is the official implementation code of the paper "ArtDet: Machine Learning Software for Automated Detection of Art Deterioration in Easel Paintings" (Paper)

[[Paper]Soon] [Dataset] [BibTeX]

Installation

1. Clone our repository:

git clone https://github.com/frangam/artdet.git
cd artdet

2. Set up Python 3.12 and create the environment

  1. Install Python 3.12 (if not already installed). On macOS or Linux:

    sudo apt update
    sudo apt install -y python3.12 python3.12-venv python3.12-dev

    For macOS (if using Homebrew):

    brew install [email protected]
  2. Create a virtual environment using Python 3.12:

    python3.12 -m venv venv
  3. Activate the environment:

    On macOS/Linux:

    source venv/bin/activate

    On Windows:

    .\venv\Scripts\activate

3. Install Mask-RCNN updated version to work with Tensorflow 2:

git clone https://github.com/alsombra/Mask_RCNN-TF2.git
cd Mask_RCNN-TF2
pip install -r requirements.txt
python setup.py install

4. Install our custom dependencies:

cd ..
pip install -r requirements.txt

5. Run the web app:

python src/run.py

Dataset

You can download our ArtInsight Dataset at: DOI

Model Checkpoints

Click the links below to download the checkpoint for the corresponding model type.

Citation

If you use our code in your research, please use the following BibTeX entry:

@article{Garcia-Moreno-PWPF,
  title={ArtDet: Machine Learning Software for Automated Detection of Art Deterioration in Easel Paintings},
  author={Garcia-Moreno, Francisco Manuel and Cortés Alcázar, Jesús and del Castillo de la Fuente, Jose Manuel  and Rodríguez-Simón, Luis Rodrigo and Hurtado-Torres, María Visitación},
  year={2024},
  journal={pending},
  doi={pending},
}

And also cite our Dataset:

(Submitted to)


@article{Garcia-MorenoArtInsight,
  title={ArtInsight: A Detailed Dataset for Detecting Deterioration in Easel Paintings},
  author={Garcia-Moreno, Francisco Manuel and del Castillo de la Fuente, Jose Manuel  and Rodríguez-Simón, Luis Rodrigo and Hurtado-Torres, María Visitación},
  year={2024},
journal={Data in Brief}
  doi={pending},
  url={},
}

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 98.6%
  • Python 1.1%
  • HTML 0.3%